
c©Copyright 2017

Ji He

Deep Reinforcement Learning in Natural Language Scenarios

Ji He

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2017

Reading Committee:

Mari Ostendorf, Chair

Xiaodong He

Hannaneh Hajishirzi

Luke Zettlemoyer

Program Authorized to Offer Degree:
Electrical Engineering

University of Washington

Abstract

Deep Reinforcement Learning in Natural Language Scenarios

Ji He

Chair of the Supervisory Committee:
Professor Mari Ostendorf

Electrical Engineering

Reinforcement learning refers to a class of algorithms that aim at learning a good policy in

a dynamic environment. Recently, by combining deep learning with reinforcement learning,

researchers have made significant breakthroughs in many artificial intelligence applications.

The most notable applications are Atari games and game of Go. However, natural language

applications involving deep reinforcement learning are still rare.

This thesis studies deep reinforcement learning in natural language scenarios with three

contributions. First we introduce a novel architecture for reinforcement learning with deep

neural networks designed to handle state and action spaces characterized by natural lan-

guage. The architecture represents state and action spaces with separate embedding vectors,

which are combined with an interaction function to approximate the Q-function in rein-

forcement learning. Second, we investigate reinforcement learning with a combinatorial,

natural language action space. Novel deep reinforcement learning architectures are studied

for effective modeling of the value function associated with actions comprised of interdepen-

dent sub-actions, accounting for redundancy among sub-actions. In addition, a two-stage

Q-learning framework is introduced as a strategy for reducing the cost to search the com-

binatorial action space. Third, we augment the state representation to incorporate global

context using an external unstructured knowledge source with temporal information. This

approach is inspired by the observation that in a real-world decision making process, it is

usually beneficial to consider background knowledge and popular current events relevant to

the current local context.

We experiment on two types of tasks, text-based games and predicting popular Reddit

discussion threads. We show that all contributions help reinforcement learning in natural

language scenarios. Specifically, experiments with paraphrased action descriptions on text

games show that separate modeling of state and action spaces is extracting meaning rather

than simply memorizing strings of text. For a combinatorial action space, our proposed

model, which represents dependence between sub-actions through a bi-directional LSTM,

gives the best performance for predicting popular Reddit threads across different domains.

The two-stage Q-learning achieves significant performance gain compared to random sam-

pling a subspace of the combinatorial action space. For tracking the most popular thread,

incorporating external knowledge in the form of discussions about world news also leads to

significant improvements with a 34% gain for discussions about topic (politics) for which

world news is particularly relevant.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 Long-term decision making in natural language scenarios 1

1.2 Experimental Tasks . 3

1.3 Approach . 5

1.4 Dissertation Overview and Contributions . 6

Chapter 2: Background . 8

2.1 Deep Learning . 8

2.2 Continuous space language processing . 11

2.3 Reinforcement learning . 12

2.4 Deep reinforcement learning . 18

2.5 Limitations of prior work . 24

Chapter 3: Tasks . 25

3.1 Text Games . 25

3.2 Predicting Popular Reddit Threads . 28

Chapter 4: DRL with a natural language action space 35

4.1 Deep Reinforcement Relevance Network . 35

4.2 DRRN on text games . 43

4.3 DRRN for Reddit thread tracking K = 1 . 51

Chapter 5: DRL with a combinatorial action space 56

5.1 Model Q-function . 56

i

5.2 Reduce search complexity . 59

5.3 Experiments . 60

Chapter 6: Incorporating external knowledge in DRL 71

6.1 Background . 71

6.2 Framework . 73

6.3 Experiments . 76

Chapter 7: Conclusion . 83

7.1 Summary of contributions . 83

7.2 Future work . 84

Bibliography . 87

ii

LIST OF FIGURES

Figure Number Page

2.1 A multilayer perceptron with input dimension 2, output dimension 2, and one
hidden layer with hidden dimension 3 . 9

2.2 DRL applications . 21

2.3 DRL applications in language processing . 23

3.1 Different types of text games . 26

3.2 State and actions in a text game . 27

3.3 A snapshot of the top of a Reddit discussion tree, where karma scores are
shown in red boxes. 30

3.4 Another example showing a person’s comment sparked a discussion 31

4.1 Different deep Q-learning architectures: Max-action DQN and Per-action
DQN both treat input text as concantenated vectors and compute output
Q-values with a single NN. DRRN models text embeddings from state/action
sides separately, and use an interaction function to compute Q-values. 37

4.2 PCA projections of text embedding vectors for state and associated action
vectors after 200, 400 and 600 training episodes. The state is “As you move
forward, the people surrounding you suddenly look up with terror in their
faces, and flee the street.” Action 1 (good choice) is “Look up”, and action 2
(poor choice) is “Ignore the alarm of others and continue moving forward.” 39

4.3 Learning curves of the two text games. All systems use L = 2 and 100-
dimensional hidden layers. 45

4.4 Learning curves of shared state-action embedding vs. proposed DRRN in
“Machine of Death” . 46

4.5 Scatterplot and strong correlation between Q-values of paraphrased actions
versus original actions . 50

5.1 Different deep Q-learning architectures . 57

5.2 Learning curves of baselines and proposed methods on “askscience” 63

iii

5.3 Average karma score gains over the linear baseline and standard deviation
across different subreddits (with N = 10, K = 3). 64

5.4 Test runtime of N = 10, Q2=DRRN-BiLSTM and different approaches for Bt 68

6.1 Incorporating external knowledge to augment a state-side representation with
an attention mechanism. The attention features {f1, f2, · · · } depend on the
state and time stamp, helping the agent learn to pay different attention to
external knowledge given different states. The shaded blue parts are learned
end-to-end within reinforcement learning. 74

6.2 Absolute gain in performance over a DRRN without external knowledge asso-
ciated with different ways of incorporating external knowledge, for 5 different
subreddits . 77

6.3 Relative (%) gain in performance from incorporating external knowledge across
5 different subreddits, for N = 10. 78

iv

LIST OF TABLES

Table Number Page

2.1 Comparison of four temporal difference methods 16

2.2 Update rules for four temporal difference methods 17

3.1 Percentage of choice-based and hypertext-based text games since 2010, in
archive of interactive fictions . 26

3.2 Statistics for the games “Saving John” and and “Machine of Death”. 28

3.3 Final rewards defined for the text game “Saving John” 28

3.4 Final rewards for the text game “Machine of Death.” Scores are assigned
according to whether the character survives, how the friendship develops, and
whether he overcomes his fear. 33

3.5 An example state and actions . 34

3.6 URLs of subreddit data sets . 34

3.7 Basic statistics of filtered subreddit data sets 34

4.1 The final average rewards and standard deviations on “Saving John”. 47

4.2 The final average rewards and standard deviations on “Machine of Death”. . 47

4.3 The final average rewards and standard deviations on “Machine of Death”,
using DRRN (L = 2) with different interaction functions. “Bilinear” refers
to computing Q-values using a bilinear operation, with a 100-dimension state
vector and different embedding dimensions for the action side. “Concatenation
+ NN” refers to computing the Q function using a NN with the concatenation
of state and action embeddings as input. 48

4.4 Q values (in parentheses) for state-action pair from “Saving John”, using
trained DRRN. High Q-value actions are more cooperative actions thus more
likely leading to better endings . 49

4.5 Q values (in parentheses) for state-action pair from “Machine of Death”, using
trained DRRN . 54

4.6 Predicted Q-value examples . 55

4.7 The final average rewards and standard deviations on the paraphrased revision
of the game “Machine of Death”. 55

v

4.8 A performance comparison (across different subreddits) with N = 10, K = 1.
All systems have hidden dimension 20. 55

5.1 Mean and standard deviation of random and upper-bound performance (with
N = 10, K = 3) across different subreddits. 61

5.2 Mean and standard deviation of random and upper-bound performance on
askscience, with N = 10 and K = 2, 3, 4, 5. 61

5.3 On askscience, average karma scores and standard deviation of baselines and
proposed methods (with N = 10) . 64

5.4 On askscience, average karma scores and standard deviation of proposed meth-
ods trained with K = 3 and test with different K’s 65

5.5 An example state and its sub-actions . 65

5.6 A performance comparison (across different K’s on askscience subreddit) . . 66

5.7 A performance comparison (across different subreddits) with K = 3, N = 10 67

6.1 States and documents (partial text) showing how the agent learns to attend
to different parts of external knowledge . 79

6.2 Effects of timing features (across different subreddits with K = 1) 81

6.3 Effects of timing features (across different subreddits with K = 3) 82

vi

ACKNOWLEDGMENTS

Many people have helped me towards my PhD degree, starting with the people who

suggested me to pursue a PhD back in my undergraduate program, or even earlier in high

school, where I established my respect for rigorous theory and perseverance to tolerate this

long and arduous journey.

First and foremost, I would like to express my sincere thanks to my supervisor, Prof.

Mari Ostendorf. She has always been supportive, even during the first few years when I

really struggled and made little progress. By the time I need to decide my thesis direction,

we had multiple topics on the table, and she encouraged me to take this one. Looking back

the decision was very visionary, as deep reinforcement learning had just started to thrive

and show its impact, and we became some of the pioneers in applying deep reinforcement

learning to the natural language processing area. On the other hand, this topic fits with

my academic background and I am also fortunate to have pursued a direction I have been

passionate about even until today. Working with Prof. Mari Ostendorf, there were happy

times and there were tough times, but there was no bad time.

Second, I would like to thank Dr. Xiaodong He, who was my mentor during my internship

at Microsoft Research, and then became my committee member in my fourth and fifth years.

I learned much about deep learning from Xiaodong, and reinforcement learning from my

internship, so that I could later on pick up recent advances on my own. Xiaodong also

provided very detailed instructions on experimental designs and shaped my research taste.

I would also like to give special thanks to Prof. Michael Perlman, who is my GSR

(Graduate School Representative) and introduced me to a concurrent Master’s program in

department of statistics. I did well in both his statistical inference courses, and also studied

vii

comprehensively in statistical learning and stochastic modeling. These equip me with a solid

mathematical background for research, as well as additional advantage when seeking jobs.

I owe many thanks to the rest of my committee. Both Prof. Hannaneh Hajishirzi and

Prof. Luke Zettlemoyer provided insightful comments during my general exam and early

stage of my thesis work. I benefited a lot from Microsoft researchers, such as Li Deng,

Lihong Li, Jianshu Chen, and Jianfeng Gao. They as well as Mari provided advising help

during comprising of the large scale reinforcement learning task. Labmates from the SSLI

lab, as well as the TIAL lab later on, are my best friends, and because everyone has different

specialty, I was exposed to different techniques overall. The list includes but is not limited to

Amittai Axelrod, Sangyun Hahn, Brian Hutchinson, Yuzong Liu, Alex Marin, Julie Medero,

Nicole Nichols, Bin Zhang, Hao Cheng, Hao Fang, Aaron Jaech, Kevin Lybarger, Yi Luan,

Farah Nadeem, Trang Tran, and Victoria Zayats.

Part of the work in my dissertation was funded by the DARPA DEFT project. I was

also allowed to explore freely and pursue my thesis direction while interning at Microsoft

Research. This work could not have been done without their support.

One unique aspect of the PhD experience is that I got to know other peers (PhD students)

in my field of study, from all around the world. Some of these connections were gained by

attending conferences, while some might be through reading their papers, personal webpages,

or social networks. I owe a lot to communicating with them, and their perseverance and work

ethics really inspire me to try to not be left behind.

Finally, I would like to express my thanks to my parents. Although they don’t know

much about my research, they try to understand what it means to pursue a PhD. They

became less involved in my education as time went by, but I learned most of work ethics

from them.

viii

1

Chapter 1

INTRODUCTION

1.1 Long-term decision making in natural language scenarios

Many artificial intelligence tasks involve sequential decision making and delayed rewards,

such as video gaming, human-computer dialogue systems, newsfeed recommendation, and

strategic financial/business planning. Reinforcement learning is a collection of algorithms

for automatically learning policies to interact with an environment. The goal is to learn an

optimal policy under which, the accumulated rewards will be maximized, by taking a specific

action sequence (based on states given by the environment). At each time step, the agent

(e.g. computer program) can automatically evaluate feasible actions and select one, and this

action will affect the future states. The set of all possible actions is called the action space.

Researchers have been successfully applying reinforcement learning for various applica-

tions with a constrained action space. For previous reinforcement learning applications,

actions are defined through task-specific features, or simple combinations of these features.

For example, in Atari games, an action is carried out through a controller, where a joystick

and a button is provided. The state is the image presented to the player. At each time step,

different directions of the joystick and whether or not to push the button form a total of

18 feasible actions, and these 18 actions form the entire action space throughout the game-

play. In the game of Go, the state includes the stone color (player stone, opponent stone or

empty), how many turns since a move was played, number of empty adjacent points, etc.

The action is a valid move for the current player, which is no more than the total number

of points on the board. In an America put option, the holder has the right to sell stock at

a pre-determined strike price on any day before the expiration date. The state is the stock

price, which is a continuous value, and the action is either to wait (till the next day) or to

2

exercise the option.

This thesis is about reinforcement learning in natural language scenarios. That is, the

state and the action descriptions about the environment are in the form of natural language

text. Since language is the most natural way to communicate with people, and to build an

automated agent helping with human productivity, it is often desired that an agent is able

to understand and execute some instructions in natural language. For example, in human-

computer or human-robot dialog systems, the agent needs to understand the dialog state,

which is usually the history of the conversation in the current dialog session. The state is

thus large and sparse, since there are numerous ways people talk about things. The dialog

manager will need to base its actions upon correct understanding of the state.

There are also situations where actions are defined through natural language. One exam-

ple is text games, where sometimes a player (human or computer agent) chooses an action

by clicking on a string of text (could be a phrase or a natural language sentence), and the

story will be directed to different developments, with different rewards corresponding to

good/bad endings. Another example is a human-computer dialog system, where the action

is the response generated by the dialog manager.

Text-based actions are also involved in tracking news feeds or popular discussion threads

in social media, where a computer agent intends to recommend popular commentary for a

user to read. Here, the goal is for the recommendation system to identify and track written

documents (e.g. news articles, comments in discussion forum threads, or scientific articles)

in real time – attempting to identify hot updates before they become hot to keep the reader

at the leading edge. The premise is that the user’s bandwidth is limited, and only a limited

number of things can be recommended out of several possibilities. At each time step, the

agent is presented with new comments associated with each tracked thread, and the agent

takes an action by choosing which of the new comments to track. A subset is formed from

tracked threads, and rewards can be assigned by reader popularity votes.

Actions in reinforcement learning that are defined through natural language can involve

a large vocabulary. Because a piece of natural language text can have arbitrary length,

3

the potential action space in these problems is unbounded. Furthermore, the feasible set of

actions at different time steps can vary (e.g. the number of links presented to the player,

the number of new comments to be tracked). Thus, a fixed-output architecture such as that

used in an Atari game cannot handle these applications.

Another challenge with natural language based actions is language understanding in con-

text. The agent has to choose the action with the most important/relevant text, given the

current state, where the importance/relevance of a text string is measured by the accumu-

lated future rewards. For example, text games often involve language understanding of the

story and pragmatic clues under each action, while tracking popular discussion threads re-

quires the agent to pick the comments that contribute the most to the current discussion

topics. In this thesis, we address these problems by developing novel architectures for deep

reinforcement learning.

1.2 Experimental Tasks

Two very different tasks are explored in order to experimentally assess our contributions.

The first is text based games. Recently, video games such as Atari games are widely studied

using deep reinforcement learning. In natural language processing, a text game is a natural

counterpart to video games in computer vision. However, the scale of text games and size

of vocabulary in one game are relatively small, which motivates us to propose a second

large scale task, tracking and predicting popular discussion threads. Similar to newsfeed

recommendation, in this task the agent tries to pick a number of discussion threads with

high popularity to the reader. Because online users respond to previous comments in real

time, this dynamic setting makes reinforcement learning a natural formulation, and millions

of comments make it easier to apply sophisticated neural architectures.

Text games, although simple compared to video games, still enjoy high popularity in

world-wide online communities.1 There are annual competitions2 held online since 1995 and

1http://www.intfiction.org/forum/, http://ifdb.tads.org/

2http://www.ifcomp.org/

4

has received hundreds of submissions so far. Text games communicate to players in the form

of text display, and players understand the revealed texts and respond by typing or clicking

text [1]. That is, the games have a high requirement for the text understanding ability of

the agent.

Text games are complex due to two major reasons. First, they often involve language

understanding of the story and pragmatic clues under each action. Players usually have

to combine both the story and choices to infer the appropriate actions (e.g. Given “In

front there is a lion”, and action “go ahead”, the player is more likely to die). The second

reason is long term dependency. A player’s early action might influence the later-on story

development, as in the example of finding a key to unlock an object that is encountered later.

Because a player’s behavior (policy) changes how the environment interacts with him or her,

reinforcement learning is appropriate for modeling long-term dependency in text games.

Text-based games represent a good starting point for exploring reinforcement learning,

but current games do not have the richness in language represented by an open vocabulary.

In order to explore a more challenging task, we also look at comment recommendation in

social media.

In this thesis, we consider Reddit popularity prediction, which is similar to newsfeed rec-

ommendation but different in two respects. First, our goal is not to make recommendations

based on an individual’s preferences, but instead based on the anticipated long-term interest

level of a broad group of readers from a target community. Second, we try to predict rather

than detect popularity. Unlike individual interests, community interest level is not often

immediately clear; there is a time lag before the level of interest starts to take off. In our

experimental work, we use discussion forum text, where the recommendations correspond to

recent posts or comments, assessing interest based on community response as observed in

“likes” or other positive reactions to those comments. For training purposes, we can use com-

munity response measured at a time much later than the original post or publication. This

problem is well-suited to the reinforcement learning paradigm, since the reward (the level

of community uptake or positive response) is not immediately known, so the system needs

5

to learn a mechanism for estimating future reactions. Different from typical reinforcement

learning, the action space is combinatorial since an action corresponds to a set of comments

(sub-actions) chosen from a larger set of candidates.

Thread popularity tracking can be thought of as a proxy task for news or scientific article

recommendation. It has the advantages that “documents” (comments) are relatively short

and that the long-term reward can be characterized by Reddit voting scores, which makes

this task easier to work with for algorithm development than these larger related tasks.

The comment tracking tasks introduce two challenges to reinforcement learning including

the development of a framework for estimating the long-term reward (the Q-value in rein-

forcement learning) from a combination of sub-actions characterized by natural language,

and the potentially high computational complexity of the combinatorial action space.

1.3 Approach

We address these challenges using value-based reinforcement learning. More specifically, we

assume the environment is a Markov decision process (in contrast to a partially observable

Markov decision process) and focus directly on estimating action value function. Because a

natural language scenario presents both large state and action spaces, we use deep neural

networks to transform the state and each action into continuous space representations. Our

major contributions are novel neural architectures for modeling Q-values with natural lan-

guage actions. We build agents that model the state space and action space separately, and

using a general interaction function to predict the expected accumulated future rewards by

taking a particular action.

We further investigate the problem of a combinatorial action space in two respects: mod-

eling dependency between sub-actions and addressing complexity of searching a large com-

binatorial action space. We address the first problem by introducing a bi-directional LSTM

deep neural network architectures to account for the potential redundancy and/or temporal

dependency of different sub-actions in relation to the state space. To reduce computational

complexity, we propose a two-stage Q-learning approach in a coarse-to-fine fashion, similar

6

to a beam search, which gives much better performance compared to random sampling a

subset of actions in a large combinatorial action space.

A major distinction between decision making in a natural language scenario and a domain

specific reinforcement learning task is that incorporating external knowledge usually helps.

We propose using an attention mechanism based on temporal features, semantic similarity

and popularity for enriching the state representation with a global context, and show that

this significantly improves performance of the original reinforcement learning task. We also

explore the use of temporal context in the Reddit popularity prediction task, specifically

timing features associated with comments, and show that they give only small gains in

performance.

Besides algorithmic development, the work makes contributions to research infrastruc-

ture. We release source codes for simulators on github.3 Unlike in computer vision (e.g.

Atari games) or robotics control (e.g. mountain car), there are not many publicly avail-

able testbeds related to reinforcement learning in natural language processing. For most

researchers in natural language processing, reinforcement learning is relatively new. Thus

proposing publicly available testbeds is especially important for the community.

1.4 Dissertation Overview and Contributions

The rest of this dissertation is organized as follows: Chapter 2 describes related background

for understanding reinforcement learning, especially the recent development of deep rein-

forcement learning. Since our approach models natural language text using deep learning, a

section on continuous space language processing is also included.

Chapter 3 introduces the two tasks studied in this thesis with more details, and shows

how those problems can be formulated using reinforcement learning. Specifically, for text

games we study choice-based and hypertext-based games. The action space in parser-based

games, in contrast, have more constrained structures. For predicting popular Reddit threads,

3https://github.com/jvking/text-games, https://github.com/jvking/reddit-RL-simulator

7

we present a motivating example to show the environment is dynamic and has long-term

dependency. We further explain how the task could lead to a combinatorial action space.

In Chapter 4 we present a novel architecture for handling a natural language action space,

called a deep reinforcement relevance network (DRRN), and demonstrate its effectiveness in

two tasks. We present results showing the new model can generalize to paraphrased actions

rather than just memorizing state-action relations in experiments with text games. It is

also shown to be useful in experiments on predicting popular Reddit threads with tracking

a single discussion thread.

In Chapter 5 we further investigate predicting popular Reddit threads in a combinatorial

action space scenario, and address how to better model dependency between sub-actions as

well as reducing search complexity in picking the optimal action.

Unlike reinforcement learning for a domain-specific task, reinforcement learning in natural

language scenarios often involve understanding about the world knowledge. The architec-

tures in Chapter 4 and 5 model state embeddings from the local context of the environment.

In Chapter 6 we propose a natural framework for incorporating external knowledge to form

a global context conditioned on current state of the environment. We verify with experi-

ments that this framework improves reinforcement learning performance in natural language

scenarios. We also explore temporal context as another form of global context.

Chapter 7 concludes this thesis with a summary and points out some open questions for

future work in this area.

8

Chapter 2

BACKGROUND

Our goal is to study long-term decision making in natural language scenarios, where an

agent learns to understand a language environment and pick the right action based on lan-

guage. This chapter presents a summary of the past and current research related to deep

reinforcement learning in natural language scenarios. Deep reinforcement learning is a rel-

atively new research topic (at the time this thesis is written). This thesis combines recent

advances in deep learning (Section 2.1), deep learning specifically for natural language pro-

cessing (Section 2.2), and reinforcement learning (Section 2.3). It builds on recent work in

deep reinforcement learning, specifically using deep neural networks as function approxima-

tions in a variety of applications (Section 2.4).

2.1 Deep Learning

Artificial intelligence is a thriving field with many practical applications and active research

topics. Perhaps the most powerful and ground-breaking development over the past decade

is deep learning [34, 91, 48]. Traditionally, many artificial intelligence tasks depend on

designing the right set of features to extract for that task. For example, speech scientists

studied the human hearing system and proposed Mel-frequency cepstrum coefficients [32]

as a representation of the short-term power spectrum of a sound. In computer vision, the

scale-invariant feature transform [106] and the histogram of oriented gradients [29] are widely

used as a first step in detecting objects in an image.

A common research trend in all artificial intelligence applications is that algorithms are

moving towards a more end-to-end trainable direction. This is due to multiple reasons. First,

many applications, such as speech recognition or objection detection in images, have much

9

Inputs Outputs

Figure 2.1: A multilayer perceptron with input dimension 2, output dimension 2, and one
hidden layer with hidden dimension 3

more data than what was available ten years ago. With a powerful end-to-end model, it is

possible to learn a feature representation that is even more expressive than hand-engineered

features that were devised over the years. Second, for many tasks it is difficult to know what

features should be extracted. Especially when a new task/domain is studied, it takes effort

to design features that will work in the new situation. Third, the development of faster

parallel computation through hardware such as a graphics processing unit (GPU) enables

training algorithms to converge faster.

Deep learning refers to using a deep neural network for function approximation. The

simplest type of deep neural network is a feedforward neural network, or sometimes called

a multilayer perceptron. The model has a layer-wise structure describing different functions

composing from input side to output side. For example, we might have three functions f (1),

f (2), and f (3) connected in a chain, to form f(x) = f (3)(f (2)(f (1)(x))), where x is an input

vector and f(x) is an output vector, as illustrated in Figure 2.1.

A common choice of parametric function (f (1), f (2), or f (3)) is an affine transformation

followed by a nonlinear element-wise activation function. The activation function can be

sigmoid [104], tanh, or rectified linear unit [45]. Thus for a particular type of problem (such

as regression, classification, or unsupervised clustering), given the objective function (such

10

as mean squared error, cross entropy, or log likelihood), learning the model is formulated as

an optimization process. A nice property with most deep neural networks is that the gradi-

ent (first-order derivative) of the objective function with respect to the model parameters,

can be computed in closed-form, using back-propagation algorithm [139]. Thus, gradient-

based optimization techniques, such as mini-batch gradient descent, are widely used in deep

learning.

Convolutional neural networks (CNN) and recurrent neural networks (RNN) are two

other types of deep architectures. In a CNN there are usually two types of operations,

the convolution operation and the (max) pooling operation. For example, given a two-

dimensional image I and a two-dimensional kernel (filter) K, the output of the convolutional

layer is:

S(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n).

After a nonlinear activation function, a pooling function is used to further modify the output.

This operation replaces the output of the net at a certain location with a summary statistic

(usually maximum) of the nearby neighboring outputs.

An RNN is especially suitable for modeling sequential data. Given an input sequence

{x(t)}, the output units are represented as a function of both current input and previous

output units: h(t) = f(h(t−1),x(t)). A simple RNN uses an affine transformation followed by

a nonlinear activation as the function f . To avoid gradient vanishing/exploding [68, 131] and

to give the model capacity for controlling when to remember/forget, long short-term memory

networks [69] and gated recurrent unit networks [25] are proposed with gating mechanisms.

Another stream of work in recent deep learning research is the attention mechanism

[7, 159, 174], where a probability distribution is computed to pay attention to certain parts

of a collection of data. It has been shown that the attention mechanism can handle long

sequences or a large collection of data, while being quite interpretable.

So far there are many empirical tricks on how to make deep neural network training better.

One of the most widely used trick is to use a learning rate schedule, such as rmsprop [170],

11

momentum [162], or adam [82]. This is especially helpful when the network has recurrent

link or ill-shaped objective function. Another stream of tricks aim to efficiently pass the error

signals in back-propagation, including initialization [44], batch normalization [74], highway

networks [156] or residue networks [65]. Researchers have also investigated methods that

prevent overfitting, such as dropout [155].

One of the early successful large-scale applications of deep learning is in automatic speech

recognition, particularly in acoustic modeling [67] replacing the Gaussian mixture model

for characterizing state distributions with a hidden Markov model [8]. Work with neural

networks in acoustic modeling goes back decades, but it recently took off with advances in

methods and hardware for learning deep models. Computer vision has been the most active

research area for deep learning. Since 2010, ImageNet project runs an annual contest where

software programs compete to correctly detect and classify objects and scenes [140]. Since

2012, deep learning has dominated in ImageNet challenge [86]. Deep learning applications

in natural language processing will be discussed in the following section.

2.2 Continuous space language processing

In the natural language processing area, learning language representations, especially using a

deep neural network, has become very popular. This is again because handcrafting features

is time-consuming and domain-dependent. Learned word representations provide a powerful

similarity model, and representations are generally divided into two categories, distributional

and distributed. Distributional word representations are based on co-occurrence/context,

with the belief that linguistic items with similar distributions have similar usage. Distributed

representations are dense and continuous in the coordinate of representation space, and often

work even better than distributional similarity. The main advantage of having a distributed

representation of text is that the text embedding is compact and less susceptible to data

sparsity.

Early distributed models were based on linear transforms of distributional statistics. In

unsupervised tasks such as language modeling, Bengio et al. [13] first introduced a neu-

12

ral probabilistic language model that learns a distributed representation of words. Mnih &

Hinton [117] proposed three graphical models for statistical language modeling and showed

the advantage of using a log-bilinear language model. In speech recognition, Schwenk [148]

described using a neural language model interpolated with the back-off language model to

achieve consistent word error rate reduction. Mikolov et al. [115] proposed a simple re-

current neural network based language model and provide ample empirical evidences that

connectionist language models are superior to standard n-gram techniques. Mikolov et al.

[114] introduced word2vec, which is an efficient estimation of continuous vector representa-

tions of words. They further explore distributed representations of sentences and documents

[90] and show that variable-length pieces of texts can be represented by a dense fixed-length

vector. Pennington et al. [133] presented a log-bilinear model that combines the advantages

of global matrix factorization and local context window methods. Kiros et al. [83] described

an approach for unsupervised learning of reconstructing the surrounding sentences of an

encoded passage using an encoder-decoder model.

In supervised (task-oriented) learning, Collobert and Weston [26] described a convolu-

tional neural network architecture that is trained jointly with multitask learning. In web

search areas, Huang et al. [73] developed the Deep Structured Semantic Model that uses deep

neural network to approximate this projection at semantic level, and measure relevance by

computing cosine similarity. Recently, Chen et al. developed a fully discriminative learning

approach for supervised Latent Dirichlet Allocation model using mirror-descent back prop-

agation [22] and demonstrated its interpretability on several large-scale text classification

tasks [21]. These related work shows variants for language representation in various tasks,

and provides insights when designing deep architectures for reinforcement learning.

2.3 Reinforcement learning

Reinforcement learning is the task of learning to make decisions that maximize rewards over

a period of time [163]. This section reviews the concepts of traditional reinforcement learning

and recent advances of deep reinforcement learning, and their non-text applications such as

13

TD-gammon [169] and Atari games [121, 119].

In the reinforcement learning setting, an agent interacts with an environment following

a particular policy. Each time the agent takes an action, the environment feeds back a

numerical value, called a reward, or reinforcement. The goal is to learn an optimal policy that

maximizes the expected sum of discounted rewards over a period of time.1 More formally,

we denote the environment state at time t as st ∈ S, where S is the set of all possible states.

The agent’s action at time t is at, and one time step later, the agent receives a scalar reward

rt+1, and the state changes to st+1. As time goes on, this agent-environment interaction is

characterized as:

s0
a0−→
r1

s1
a1−→
r2

s2 −→ . . . −→ st
at−−→
rt+1

st+1 −→ . . .

The above illustration is called an episode, and can also be characterized by a sequence

of tuples (st, at, rt+1, st+1). A policy π(s) is a mapping from state to action, or probability

π(s, a) of taking action a at state s. The goal of reinforcement learning is to learn an optimal

policy that brings maximum rewards for any given state.

Markov Decision Process

Typically the transition in a reinforcement learning setting is stochastic, i.e. we can use a

probability distribution to characterize the next possible state and reward given the current

state and action, as well as previous history information (rewards/states/actions). A rein-

forcement learning problem that satisfies the Markov property is called a Markov Decision

Process (MDP). For an MDP, we have:

Pr [st+1, rt+1|st, at, rt, st−1, at−1, . . . , r1, s0, a0] = Pr [st+1, rt+1|st, at] ,

which greatly reduces the number of model parameters.

An important notion in reinforcement learning is the value function, which is a function

of the state (denoted as V π(s)), or state-action pair (denoted as Qπ(s, a)) under a particular

1The discount rate determines the present value of future rewards. It decides how myopic or long-sighted
the agent will be, and also helps to make the value function converge.

14

policy π. The value function computes the expected sum of discounted rewards. If we denote

the discounting factor as γ ∈ [0, 1], then the value function of state s under a policy π is:

V π(s) = Eπ

[
∞∑
i=0

γirt+1+i | st = s

]
,

and the value function of state-action pair (s, a) under policy π is:

Qπ(s, a) = Eπ

[
∞∑
i=0

γirt+1+i | st = s, at = a

]
.

The state value function is used when the value of the environment can be fully characterized

using the state representation, such as in chess or game of Go, while the action value function

is used if both state and action affect the value of the environment.

The Bellman equation [137] describes the “Principle of Optimality” of the optimal value

function, i.e.

An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.2

The Bellman equation is a necessary condition for optimizing the action policy for an MDP.

Take the famous Q-learning [179] as an example, if we denote the optimal value function as

Q∗(s, a), its corresponding Bellman’s equation is:

Q∗(st, at) = Eπ
[
rt+1 + γmax

a
Q∗(st+1, a)

]
.

Inspired by fixed-point iteration and stochastic gradient descent, Q-learning solves the Bell-

man equation by performing the following update, with the observed tuple (st, at, rt+1, st+1):

Q(st, at)← (1− η)Q(st, at) + η
(
rt+1 + γmax

a
Q(st+1, a)

)
,

where η, sometimes denoted as ηt(st, at), is the learning rate.

2From Bellman, 1957, Chap. III.3.

15

Partially Observable Markov Decision Process

Often times the agent cannot get full information about the current state. This is called a

Partially Observable Markov Decision Process (POMDP). Partial observation of the state

can appear in the case of game play when given a current observation a player’s history

action still affects future rewards. For example, in a text-based game, a player may need to

collect enough money in order to purchase certain key items. The game may or may not tell

the player how much he needs to accumulate. In the latter case, the game state is partially

shown to the player. Another example is from a spoken dialogue system, where a user speaks

to a machine in order to complete a particular task, such as restaurant search or buying a

flight ticket. The spoken dialogue system needs to first recognize the user’s speech, and track

the user’s intent throughout the entire dialogue. In this case, automatic speech recognition

might be erroneous and the user’s intent is only partially observable to the dialogue manager.

There are a couple of approaches for transforming a POMDP to an MDP. The first is

by defining the “state” to be all history information ((si, ai, ri), for i = 0, 1, 2, . . .). An

obvious drawback is the number of states will increase vastly, and the dimension of the

state increases at every time step, making solving the problem even more difficult. Another

approach, called belief state, is to maintain a probability distribution over all possible states.

In the case of dialogue state tracking, the belief state characterizes the user’s intention, often

with human-specified features (e.g. size of pizza order). The belief state is updated in a

posterior probability fashion after the system processes the current user input.

In our applications, both text games and predicting popular Reddit threads are essentially

POMDPs, but we treat them as MDPs for simplicity. One can reduce the effect of the non-

observable part by considering longer history of the state. This is exactly what we did with

predicting popular Reddit threads. For text games, we did not consider transforming a

POMDP to an MDP, because including the history for games could lead to memorizing the

game since the game space is small. As discussed further in Chapter 7, it will be interesting

future work to compare methods such as DRQN [57] or recurrent reinforcement learning [97]

16

TD-method Value func-

tion

On/off-policy Bellman equation

TD(0) V (s) on-policy V (st) = Eπ [rt+1 + γV (st+1)]

SARSA Q(s, a) on-policy Q(st, at) = Eπ [rt+1 + γmaxaQ(st+1, a)]

Q-learning Q(s, a) off-policy Q(st, at) = Eπ [rt+1 + γmaxaQ(st+1, a)]

Actor-Critic actor: p(a|s)

critic: V (s)

on-policy

Table 2.1: Comparison of four temporal difference methods

as a solution to model a POMDP.

Temporal-Difference Learning

Temporal-difference learning is one of the three fundamental classes of algorithms solving

reinforcement learning; the other two are dynamic programming and Monte Carlo methods

[163]. The idea of temporal-difference learning is to bootstrap trained models, i.e. to update

models partly based on model predictions, without waiting for final outcomes. Compared to

the other two methods, dynamic programming requires the knowledge of the environment,

and Monte Carlo cannot do a step-by-step incrementation thus it lacks the advantages of

bootstrapping. TD(0), SARSA, Q-learning, and Actor-Critic are all different variations of

temporal difference learning. They differ in the choice of value functions, on/off-policy (on-

policy means policy evaluation is done according to data policy, or behavior policy), Bellman

equations etc., as shown in Table 2.1. These differences result in different update rules, as

shown in Table 2.2. In this thesis, we will stick with Q-learning, because empirically it gives

better convergence behavior, and the tasks studied are essentially evaluating values in given

natural language actions.

The tradeoff between exploration and exploitation is an important issue broadly and

often involves designing sophisticated action selection algorithms. Based on a specific policy,

17

TD-method Update rule

TD(0) V (st)← (1− η)V (st) + η(rt+1 + γV (st+1))

SARSA Q(st, at)← (1− η)Q(st, at) + η(rt+1 + γQ(st+1, at+1))

Q-learning Q(st, at)← (1− η)Q(st, at) + η(rt+1 + γmaxaQ(st+1, a))

Actor-Critic δt = rt+1 + γV (st+1)− V (st); Q(st, at)← Q(st, at) + ηδt

Table 2.2: Update rules for four temporal difference methods

selecting the action with the highest value function is called greedy action selection, and

is preferred if we want to maximize exploitation. However, in the long run, especially in a

dynamic environment, it is often preferable to keep exploring new strategies as well. ε-greedy

and softmax action selection are two popular algorithms. In ε-greedy, actions are picked at

random with a small probability ε, and greedy action with probability 1− ε. That is:

at =

arg maxait∈At
Q(st, a

i
t)), with p = 1− ε

uniformly random ait ∈ At, with p = ε

In softmax action selection, a softmax function is applied for value function Q(s, a) to form

a discrete probability distribution, and the action is selected based on this multinomial

distribution. More specifically, the action is chosen according to the following probability:

π(at = ait|st) =
exp(α ·Q(st, a

i
t))∑|At|

j=1 exp(α ·Q(st, a
j
t))
,

where At is the set of feasible actions at state st, a
i
t is the i-th feasible action in At, | · |

denotes the cardinality of the set, and α is the scaling factor in the softmax operation. In

this thesis, the choice of whether ε-greedy or softmax action selection is empirical and based

on convergence speed in learning curves.

Another stream of work focuses on policy gradients [164, 9, 5, 185]. In policy gradient

methods, a differentiable policy with respect to its weights is modeled directly. The policy

gradient theorem states that the gradient of expected reward with respect to the policy

18

parameters, can be written in a form suitable for estimation from experience aided by an

approximate action-value or advantage function [164]. Examples of this approach include

the popular REINFORCE method, which appears in several recent NLP papers [93, 187,

92], the actor-critic method, which is used in human-computer dialog systems [157], and

asynchronous methods for Atari games [120] and continuous control [99]. Amari [5] proposed

a natural policy gradient using the Fisher-information matrix to estimate policy gradients

when the parameter space has a certain underlying structure (Riemannian structure).

Function approximation is widely used in reinforcement learning, in both value function

approaches and policy gradient methods. The motivation is that it is often unnecessary or

impossible to represent value functions or policies using a lookup table. There has been some

well-developed theory guaranteeing convergence properties in using a lookup table or linear

function approximation in temporal difference learning. However, little has been proved

when function approximations are non-linear and the update rules (Table 2.2) follow direct

stochastic gradient descent. Baird [9] developed the residual algorithm, which is a general-

ization of direct and residual gradient algorithms. It has guaranteed convergence compared

to direct algorithms and it converges faster compared to residual gradient algorithms. In

this thesis, the focus is on evaluating action values in natural language scenarios, so we use

Q-learning rather than policy gradient methods, and we do not address theoretical aspects

(such as bounds or convergence properties) of proposed algorithms.

2.4 Deep reinforcement learning

Most successful reinforcement learning applicability has been limited to domains where crit-

ical hand-crafted features are available. Recently, inspired by advances in deep learning

[91, 67, 86, 28], significant progress has been made by combining deep learning with reinforce-

ment learning, thus called deep reinforcement learning (DRL). However, for reinforcement

learning, approximating the value function using a non-linear transformation is known to be

unstable or even diverge [172]. The “Deep Q-Network” (DQN) was developed and applied to

Atari games (Figure 2.2(a)) and was shown to achieve human level performance by applying

19

convolutional neural networks to the raw image pixels [118, 119]. A deep neural network

is used as a function approximation in a variant of Q-learning [179], and techniques such

as target network and experience replay, are introduced to ensure the algorithm converges

stably.

In a more recent development, Schaul et al. [145], study two variants of prioritized

sampling (rank-based and proportional) as substitutes for uniformly sampling experience

transitions. Knowledge transfer and multi-task/transfer learning are pursued by Andrei et

al. [141] and Parisotto et al. [130]. Wang et al. [178] proposes a new model called dueling

network architectures that maintaining separate value and (action) advantage functions, and

show that this architecture leads to better policy evaluation in the presence of many similar-

valued actions. Their evidence that the state-value function and (action) advantage function

may have very different value ranges suggests it is better to learn state and action sides

separately.

To address overestimations of action values, double Q learning [55, 173] has been proposed

as a new off-policy algorithm, and it leads to better performance gains on several Atari

games. Dulac-Arnold et al. [38] also investigated a problem of large discrete action spaces.

A Wolpertinger architecture is proposed to reduce computational complexity of evaluating

all actions. While a combinatorial action space can be large and discrete, this method does

not directly apply in our case, because the possible actions are changing over different states.

In this thesis, we borrow the philosophy from double Q and propose a two-stage Q-learning

approach to reduce computational complexity in a combinatorial natural language action

space.

Other work that targets a structured action space includes: an actor-critic algorithm,

where actions can have real-valued parameters [56]; and the factored Markov Decision Process

(MDP) [50, 142], with certain independence assumptions between a next-state component

and a sub-action. As for a bandits setting, Yue and Guestrin [193] considered diversification

of multi-item recommendation, but their methodology is limited to using linear approxima-

tion with hand-crafted features.

20

2.4.1 DRL applications

TD-gammon is one of the early successful applications using temporal-difference learning

and neural network function approximations [169]. It was able to achieve the expertise level

of a human player, and its extensive exploration in training led to advances in backgammon

strategy. Atari games (Figure 2.2(a)) are another example of applying deep reinforcement

learning [121, 119]. The algorithm is capable of human level performance by reading in raw

image pixels and applying convolutional neural networks. Experience replay and iterative

updates are used to make sure the non-linear function approximation (such as a deep neural

network) converges stably. It is demonstrated that a single architecture can successfully

learn control policies in a range of different environments with little prior knowledge about

game design.

Another stream of work focuses on continuous control (Figure 2.2(b)) with deep rein-

forcement learning [99], where an actor-critic algorithm operates over a known, continuous

action space. Tasks described in this thesis have an action space defined through unre-

stricted natural language. That is: i) inherently discrete, but mapped to a continuous space

for more effective value function approximation, and ii) unbounded in that sequences can be

any length.

There has also been increasing interest in applying reinforcement learning, especially

DQN, to other problems. Li et al. [97] developed a joint training approach for recurrent

reinforcement learning and demonstrate its effectiveness on a customer relationship manage-

ment task. Silver et al. [150] combined deep neural networks and Monte Carlo tree search

and developed a computer program that became the first Computer Go program to beat a

human professional Go player on a full-sized 19× 19 board (Figure 2.2(c)).

In terms of testbeds, the Arcade Learning Environment (ALE) [12] is a framework com-

posed of Atari 2600 games to develop and evaluate AI agents. So far the largest and the

most comprehensive testbeds for reinforcement learning are from OpenAI. OpenAI Gym3 is

3https://gym.openai.com

21

Deep Reinforcement Learning (DRL)

• Function approximation based on deep learning
• Recent advances and applications

5

(a) Atari game “Space Invader” (from [121])

Deep Reinforcement Learning (DRL)

• Function approximation based on deep learning
• Recent advances and applications

5

(b) Continuous control (from [99])

Deep Reinforcement Learning (DRL)

• Function approximation based on deep learning
• Recent advances and applications

5

(c) AlphaGo (from [150])

Deep Reinforcement Learning (DRL)

• Function approximation based on deep learning
• Recent advances and applications

5

(d) OpenAI Universe platform: interacting with a

mobile user interface

Figure 2.2: DRL applications

a toolkit for the developing and comparing reproducible reinforcement learning algorithms.

Their environment consists of classic control, board games, to video games such as Atari

games and Doom. OpenAI Universe4 takes one step further, providing a software platform

for evaluating and training intelligent agents across the world’s supply of games, websites

and other applications. Universe has already integrated many environments, including flash

games, browser tasks like Mini World of Bits, and real-world browser tasks (Figure 2.2(d)).

Recently, Grand Theft Auto V was added to Universe for self-driving vehicle simulation.

4https://universe.openai.com

22

2.4.2 DRL applications in language processing

In language processing, reinforcement learning has been applied to a dialogue management

system that converses with a human user by taking actions that generate natural language

[146, 151]. Very recently, Hongyu Guo [51] introduced a novel schema for sequence-to-

sequence learning with deep reinforcecement learning, applied on a text generation task.

Cuayáhuitl et al. [27] describes a successful situated dialogue setting (Figure 2.3(a)) with

deep reinforcement learning for training intelligent agents with strategic conversational skills.

There has also been interest in extracting textual knowledge to improve game control per-

formance [19], and mapping natural language instructions to sequences of executable actions

[18]. Narasimhan et al. [122] applied a Long Short-Term Memory DQN framework to the

task of learning control policies for parser-based text games, which achieves higher average

reward than the random and Bag-of-Words DQN baselines. Due to the potentially infinite in-

put space, modeling parser-based text games requires restrictions on player input [122], such

as fixed command structures (one action and one argument object), and limited action-side

vocabulary size. For unrestricted natural language, this approach is infeasible.

Narasimhan et al. [123] applied reinforcement learning for acquiring and incorporating

external evidence to improve information extraction accuracy (Figure 2.3(b)). They use Q-

learning but does not have a natural language action space. Wen et al. [180] introduced a

neural network-based trainable dialogue system along with a way of collecting task-oriented

dialogue data based on a pipelined Wizard-of-Oz framework (Figure 2.3(c)). Su et al. [157]

described a unified neural network framework to first learn by supervision from a set of dia-

logue data and then continuously improve its behaviour via reinforcement learning, all using

gradient-based algorithms on one single model. Li et al. [93] applied deep reinforcement

learning to model future reward in conversation-style chatbot dialogue. Their model simu-

lates dialogues between two virtual agents, using policy gradient methods to reward sequences

that display several specific useful conversational properties (Figure 2.3(d)). Bhuwan et al.

[35] proposed a dialogue agent that provides users with an entity from a knowledge base by

23

DRL in NLP

6

Task-oriented dialog Chatbot

Information extraction Games using language
(a) Board game using language (from [27])

DRL in NLP

6

Task-oriented dialog Chatbot

Information extraction Games using language
(b) DRL for improving information extraction accu-

racy (from [123])

DRL in NLP

6

Task-oriented dialog Chatbot

Information extraction Games using language

(c) Task-oriented dialog (from [180])

DRL in NLP

6

Task-oriented dialog Chatbot

Information extraction Games using language

(d) Chatbot (from [93])

Figure 2.3: DRL applications in language processing

interactively asking for its attributes. These efforts aim at generating natural language re-

sponses as actions using policy gradient methods, and do not directly apply in our scenarios

involving text games or predicting popular Reddit threads, where the possible actions are

provided. In terms of testbeds, Nogueira and Cho [125] have proposed a goal-driven web

navigation task for language based sequential decision making study. However their paper

only uses supervised learning rather than reinforcement learning for benchmark performance.

This thesis introduces a new class of text games and an online popularity prediction and

tracking task as a benchmark task for reinforcement learning with a combinatorial, natural

language action space.

24

2.5 Limitations of prior work

This chapter reviews necessary background related to deep learning in natural language

processing and deep reinforcement learning. These studies can be roughly divided in two

categories. One is using value function approaches such as Q-learning for dealing with a

natural language state space and a pre-specified action space, as in the cases of board games,

information extraction, or parser-based text games. The other is using policy gradient meth-

ods for generating a natural language response (such as task-oriented dialog and chatbot),

and often post-date our initial work in Chapter 4. In our scenarios, both states and actions

are given as unrestricted natural language text, and the agent tries to evaluate the future

value in each action, so the above techniques cannot be directly applied. In the following

chapters, we will first describe our approach to a natural language action space, and then

further extend the architecture and investigate a combinatorial action space that is common

in a recommendation system such as predicting and tracking popular discussion threads.

Also, one distinctive aspect of natural language tasks is that incorporating external knowl-

edge is usually helpful. This thesis serves to extend deep reinforcement learning methods to

be more effective in a variety of natural language scenarios.

25

Chapter 3

TASKS

3.1 Text Games

One of the early text game subgenres is roguelike games (Figure 3.1(a)). The game is

turn-based and often with tile-based graphics design. At the start of the game, the main

character is placed at the top level of a dungeon, with basic equipment such as a simple

weapon, armor, torches, and food. The player moves the character through the dungeon

rooms, collecting treasure or fight enemies. The map and main character are shown as ascii

characters, and some information about the environment and main character is shown in text

form. However, in this kind of game, the state information is conveyed through graphics using

text characters rather than natural language, and navigating through the map requires no

language understanding. Thus we do not focus on this type of game in this thesis.

There are three other types of text games: parser-based (Figure 3.1(b)), choice-based

(Figure 3.1(c)), and hypertext-based (Figure 3.1(d)). Parser-based games (e.g. Zork1) were

popular among early personal computer users. They are the least user-friendly text games.

Their prominent feature involves a natural-language parser inside the simulator that accepts

typed-in commands from the player, usually in the form of verb phrases, such as “eat apple”,

“get key”, or “go east.” Choice-based and hypertext-based games, on the other hand, present

actions described in text after or embedded within the state text. The player chooses one of

these actions, and the story continues based on the action taken at this particular state. With

the development of web browsing and richer HTML display, choice-based and hypertext-

based text games have become increasingly popular in online communities, increasing in

1https://en.wikipedia.org/wiki/Zork

26

(a) Roguelike text game (b) Parser-based

(c) Choiced-based (d) Hypertext-based

Figure 3.1: Different types of text games

percentage of online text games from 8% in 2010 to 62% in 2014,2 as shown in Table 3.1.3

Year 2010 2011 2012 2013 2014

Percentage 7.69% 7.89% 25.00% 55.56% 61.90%

Table 3.1: Percentage of choice-based and hypertext-based text games since 2010, in archive
of interactive fictions

For a specific parser-based text game, Narasimhan et al. [122] have defined a fixed set

of 222 actions, which is the total number of phrases the parser accepts. Thus the parser-

based text game is reduced to a problem that is well suited to a fixed-action-set DQN.

2Statistics are obtained from http://www.ifarchive.org

3Statistics are obtained from http://www.ifarchive.org

27

Motivating Task 1
Text-based games

8

State text

Action text 1

As you move forward, the
people surrounding you
suddenly look up with terror in
their faces, and flee the street.

Look up.
Ignore the alarm of others and
continue moving forward.

Action text 2

Interact: choose
an action and
affects the story

Which action will
lead to a better

ending?

Reward: sentiment polarity of good/bad endingsFigure 3.2: State and actions in a text game

However, for choice-based and hypertext-based text games, the size of the action space could

be exponential with the length of the action sentences, which is handled here by using a

continuous representation of the action space. In Table 3.2, we show basic game statistics

of the two popular text games used in this thesis: “Saving John” and “Machine of Death”.

Simulators are available at https://github.com/jvking/text-games.

In Figure 3.1, we show one time step in the game “Machine of Death”. In this case, the

state text (describing the state of environment) is st = “As you move forward, the people

surrounding you suddenly look up with terror in their faces, and flee the street.” We see two

action texts At = {a1t , a2t} and their underlines indicate that they have hyperlinks connecting

to possible next states. In this time step, a1t = “Look up.” and a2t = “Ignore the alarm of

others and continue moving forward.” The agent needs to predict Q(st, a
1
t) and Q(st, a

2
t) in

order to make a decision.

In terms of reward, we manually annotate terminal rewards for all distinct endings in

both games. The magnitude of reward scores are given to describe sentiment polarity of

good/bad endings, as shown in Table 3.3 and Table 3.4. For each non-terminating step we

assign with a small negative reward, to encourage the learner to finish the game as soon as

possible.

28

Game Saving John Machine of Death

Text game type Choice Choice & Hypertext

State vocab size 1762 2258

Action vocab size 171 419

Avg. words/description for the state 76.67 67.80

State transitions Deterministic Stochastic

of states (underlying) ≥ 70 ≥ 200

Table 3.2: Statistics for the games “Saving John” and and “Machine of Death”.

Reward Endings (partially shown)

-20 Suspicion fills my heart and I scream. Is she trying to kill me? I don’t trust

her one bit...

-10 Submerged under water once more, I lose all focus...

0 Even now, she’s there for me. And I have done nothing for her...

10 Honest to God, I don’t know what I see in her. Looking around, the situation’s

not so bad...

20 Suddenly I can see the sky... I focus on the most important thing - that I’m

happy to be alive.

Table 3.3: Final rewards defined for the text game “Saving John”

3.2 Predicting Popular Reddit Threads

Social media such as online discussion forums have become a popular way for people to

express their opinions and follow discussions that interest them. Discussion forums with

a lot of web text, such as reddit, have also drawn interests in natural language processing

community [76, 182, 4]. This is because web texts are quick reflections on news issues and

society trends [87], and can be useful in sentiment analysis and opinion mining [126, 113].

They are also more challenging since they are more flexible than formal text, e.g. news

29

articles. Our experiments are based on Reddit,4 one of the world’s largest public discussion

forums. Reddit is a social networking and news website founded in 2005, and has 1.7 billion

comments publicly available for research.5

On Reddit, registered users initiate a post and people respond with comments, either

to the original post or one of its associated comments. Together, the comments and the

original post form a discussion tree, which grows as new comments are contributed. It has

been shown that discussions tend to have a hierarchical topic structure [182], i.e. different

branches of the discussion reflect a narrowing of higher level topics. Reddit discussions are

grouped into different domains, called subreddits, according to different topics or themes.

Depending on the popularity of the subreddit, a post can receive hundreds of comments.

Popularity prediction and tracking in the Reddit setting is used in this thesis for studying

reinforcement learning to model long-term rewards in a combinatorial action space. At each

time step, the state corresponds to the collection of comments previously recommended. The

system aims at automatically picking K lines of the discussion to follow from the new set of

N comments in a given window, which is a combinatorial action.

Comments (and posts) are associated with positive and negative votes (i.e., likes and

dislikes) from registered users that are combined to get a karma score, which is used as the

measure for popularity. An example of the top of a Reddit discussion tree is given in Figure

3.3. The scores in red boxes mark the current karma (popularity) of each comment, and it is

quite common that a lower karma comment (e.g. “Yeah, politics aside, this one looks much

cooler”, compared to “looks more like zom-bama”) will lead to more children and popular

comments in the future (e.g. “true dat”). In Figure 3.4, we show another example where a

user’s comment (“Does the UK have minimums for officials ages?”) sparked a discussion and

downstream comments have higher karma scores than the first one. Note that the karma

scores are dynamic, changing as readers react to the evolving discussion and eventually

settling down as the discussion trails off. In a real-time comment recommendation system,

4http://www.reddit.com

5https://www.reddit.com/r/datasets/comments/3bxlg7/i have every publicly available reddit comment

30

Figure 3.3: A snapshot of the top of a Reddit discussion tree, where karma scores are shown
in red boxes.

the eventual karma of a comment is not immediately available, so prediction of popularity is

based on the text in the comment in the context of prior comments in the subtree and other

comments in the current time window.

To formulate this problem into Q-learning, suppose the agent is at a time step where

the set of comments that are being tracked is the top level comment in Figure 3.3 (i.e.

[“bonus obamazilla: http://i.imgur.com/Ri2yGvl.png”]). All previously tracked comments

are considered as state st = [“bonus obamazilla: http://i.imgur.com/Ri2yGvl.png”]. If we

set the window size N = 2, the agent might only see two actions At = {a1t , a2t}, and a1t =

“looks more like zom-bama”, a2t = “Yeah, politics aside, this one looks much cooler.” A

good agent will predict Q(st, a
1
t) < Q(st, a

2
t) and choose the second action that leads to more

future karma scores. The formulation of this example is shown in Table 3.5.

In this work, we only consider new comments associated with the threads of the discussion

31

Figure 3.4: Another example showing a person’s comment sparked a discussion

that we are currently following to limit the number of possible sub-actions at each time

step and with the assumption that prior context is needed to interpret the comments. In

other words, the new recommendation should focus on comments that are in the subtrees

of previously recommended comments. Typically, one would expect some interdependencies

between comments made in the same window if they fall under the same subtree, because

they correspond to a reply to the same parent. In addition, there may be some temporal

dependency, since one sub-action may be a comment on the other. These dependencies will

affect the combined utility of the sub-actions.

More specifically, we can consider the task of recommending multiple discussion threads

at the same time. The set of comments that are being tracked at time step t is denoted

as Mt. All previously tracked comments, as well as the post (root node of the tree), are

considered as state st (st = {M0,M1, · · · ,Mt}), and we initialize s0 = M0 to be the post.

An action is taken when a total of N new comments {ct,1, ct,2, · · · , ct,N} appear as nodes in

the subtree(s) of Mt, where the comments ct,j are the first N in time that are descendants

of one of cit−1 ∈ at−1. The agent picks a set of K comments to be tracked in the next time

32

step t+ 1. Thus we have:

at = {c1t , c2t , · · · , cKt }, cit ∈ {ct,1, ct,2, · · · , ct,N} and cit 6= cjt if i 6= j (3.1)

and Mt+1 = at. At the same time, by taking action at at state st, the reward rt+1 is the

accumulated karma scores, i.e. the sum over all comments in Mt+1. Note that the reward

signal is used in online training, while at model deployment (testing stage), the scores are

only used as an evaluation metric.

Following the reinforcement learning tradition, we call tracking of a single discussion tree

from start (root node post) to end (no more new comments appear) an episode. We also

randomly partition all discussion trees into separate training and testing sets, so that texts

seen by the agent in training and testing are from the same domain but different discussions.

For each episode, depending on whether training/testing, the simulator randomly picks a

discussion tree, and presents the agent with the current state and N new comments.

We conduct experiments on data from several subreddits, which cover diverse genres and

topics. The URLs are shown in Table 3.6. In order to have long enough discussion threads,

we filter out discussion trees with fewer than 100 comments. For each of the subreddits,

we randomly partition 90% of the data for online training, and 10% of the data for test-

ing. Models are trained separately for each subreddit and the subreddit vocabulary is the

most frequent 5000 words. Our evaluation metric is accumulated karma scores. Simulators

are available at https://github.com/jvking/reddit-RL-simulator. The basic subreddit

statistics are shown in Table 3.7.

Our task of tracking popular Reddit comments is somewhat related to an approach to

multi-document summarization described in [31]. A difference with respect to our problem

is that the space of text for selection evolves over time. In addition, in our case, the agent

does not have access to the optimal policy, in contrast to the SEARN algorithm used in that

work.

33

Reward Endings (partially shown)

-20 You spend your last few moments on Earth lying there, shot through the heart,

by the image of Jon Bon Jovi.

-20 you hear Bon Jovi say as the world fades around you.

-20 As the screams you hear around you slowly fade and your vision begins to blur,

you look at the words which ended your life.

-10 You may be locked away for some time.

-10 Eventually you’re escorted into the back of a police car as Rachel looks on in

horror.

-10 Fate can wait.

-10 Sadly, you’re so distracted with looking up the number that you don’t notice

the large truck speeding down the street.

-10 All these hiccups lead to one grand disaster.

10 Stay the hell away from me! She blurts as she disappears into the crowd

emerging from the bar.

20 You can’t help but smile.

20 Hope you have a good life.

20 Congratulations!

20 Rachel waves goodbye as you begin the long drive home. After a few minutes,

you turn the radio on to break the silence.

30 After all, it’s your life. It’s now or never. You ain’t gonna live forever. You

just want to live while you’re alive.

Table 3.4: Final rewards for the text game “Machine of Death.” Scores are assigned according
to whether the character survives, how the friendship develops, and whether he overcomes
his fear.

34

State text

bonus obamazilla: http://i.imgur.com/Ri2yGvl.png

Action texts

[1] looks more like zom-bama [2] Yeah, politics aside, this one looks much cooler.

Immediate rewards

[1] 78 [2] 39

Table 3.5: An example state and actions

Subreddit URL

askscience https://www.reddit.com/r/askscience/

askmen https://www.reddit.com/r/askmen/

todayilearned https://www.reddit.com/r/todayilearned/

askwomen https://www.reddit.com/r/askwomen/

politics https://www.reddit.com/r/politics/

worldnews https://www.reddit.com/r/worldnews/

nfl https://www.reddit.com/r/nfl/

Table 3.6: URLs of subreddit data sets

Subreddit # Posts (in k) # Comments (in M) OOV rates

askscience 0.94 0.32 14.0%

askmen 4.45 1.06 6.7%

todayilearned 9.44 5.11 13.1%

askwomen 3.57 0.81 7.4%

politics 4.86 2.18 9.7%

worldnews 9.88 5.99 10.8%

nfl 11.73 6.12 15.7%

Total 44.87 21.59 N/A

Table 3.7: Basic statistics of filtered subreddit data sets

35

Chapter 4

DRL WITH A NATURAL LANGUAGE ACTION SPACE

This chapter introduces a novel architecture for deep RL for NLP, termed the Deep Re-

inforcement Relevance Network (DRRN). In experiments on both text games and predicting

popular Redidt threads, we show that the DRRN provides an effective solution to this prob-

lem. Previous deep reinforcement learning studies mainly focus on dealing with a large state

space (e.g. a natural language state space), while the action space is pre-specified. When

actions are described through natural language, the action space is unbounded. Most of

contributions in this chapter are published in [58].

4.1 Deep Reinforcement Relevance Network

In this sequential decision making problem, at each time step t, the agent receives a text

string that describes the state st ∈ S (i.e., “state-text”) and picks a text string that describes

the action at ∈ A (i.e., “action-text”), where S and A denote the state and action spaces,

respectively. Here, we assume at is chosen from a set of given candidates. In our case

both S and A are described by natural language. Given the state-text and action-texts, the

agent aims to select the best action in order to maximize its long-term reward. Then the

environment state is updated st+1 = s′ according to a probability p(s′|s, a), and the agent

receives a reward rt+1 for that particular transition. We define the action-value function (i.e.

the Q-function) Q(s, a) as the expected return starting from s and taking the action a:

Q(s, a) = E

{
+∞∑
l=0

γlrt+1+l|st = s, at = a

}

36

where γ ∈ (0, 1) denotes a discount factor. The Q-function associated with an optimal policy

can be found by the Q-learning algorithm [179]:

Q(st, at)← Q(st, at) + ηt ·
(
rt+1 + γ ·max

a
Q(st+1, a)−Q(st, at)

)
where ηt is a learning rate parameter.

A vanilla Q-learning recursion needs to maintain a table of size |S| × |A|, which is prob-

lematic for a large state/action space. Prior work using a DNN in Q-function approximation

has shown high capacity and scalability for handling a large state space, but most studies

have used a network that generates |A| outputs, each of which represents the value of Q(s, a)

for a particular action a. It is not practical to have a DQN architecture of a size that is

explicitly dependence on the large number of natural language actions. Further, in many

text games, the feasible action set At at each time t is an unknown subset of the unbounded

action space A that varies over time.

For the case where the maximum number of possible actions at any point in time

(maxt |At|) is known, the DQN can be modified to simply use that number of outputs

(“Max-action DQN”), as illustrated in Figure 4.1(a), where the state and action vectors

are concatenated (i.e., as an extended state vector) as its input. The network computes

the Q-function values for the actions in the current feasible set as its outputs. For a com-

plex game, maxt |At| may be difficult to obtain, because At is usually unknown beforehand.

Nevertheless, we will use this modified DQN as a baseline.

An alternative approach is to use a function approximation using a neural network that

takes a state-action pair as input, and outputs a single Q-value for each possible action

(“Per-action DQN” in Figure 4.1(b)). This architecture easily handles a varying number of

actions and represents a second baseline.

We propose an alternative architecture for handling a natural language action space in

sequential text understanding: the deep reinforcement relevance network (DRRN). As shown

in Figure 4.1(c), the DRRN consists of a pair of DNNs, one for the state text embedding

and the other for action text embeddings, which are combined using a pairwise interaction

37

𝑠௧ 𝑎௧
௜

ℎଵ

ℎଶ

𝑠௧ 𝑎௧
ଵ

ℎଵ

ℎଶ

𝑄௧(𝑠, 𝑎ଵ)

𝑎௧
ଶ

𝑄௧(𝑠, 𝑎ଶ)𝑄௧(𝑠, 𝑎௜)

(a) Max-action DQN

𝑠௧ 𝑎௧
௜

ℎଵ

ℎଶ

𝑠௧ 𝑎௧
ଵ

ℎଵ

ℎଶ

𝑄௧(𝑠, 𝑎ଵ)

𝑎௧
ଶ

𝑄௧(𝑠, 𝑎ଶ)𝑄௧(𝑠, 𝑎௜)

(b) Per-action DQN

𝑠௧

pairwise interaction function
(e.g. inner product)

𝑎௧௜

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎௜)

ℎଶ,௔௜

ℎଵ,௔௜

(c) DRRN

Figure 4.1: Different deep Q-learning architectures: Max-action DQN and Per-action DQN
both treat input text as concantenated vectors and compute output Q-values with a single
NN. DRRN models text embeddings from state/action sides separately, and use an interac-
tion function to compute Q-values.

function. The texts used to describe states and actions could be very different in nature, e.g.,

a state text could be long, containing sentences with complex linguistic structure, whereas

an action text could be very concise or just a verb phrase. Therefore, it is desirable to use

two networks with different structures to handle state/action texts, respectively. As we will

see in the experimental sections, by using two separate deep neural networks for state and

action sides, we obtain much better results.

4.1.1 DRRN architecture: Forward activation

Given any state/action text pair (st, a
i
t), the DRRN estimates the Q-function Q(st, a

i
t) in

two steps. First, map both st and ait to their embedding vectors using the corresponding

DNNs, respectively. Second, approximate Q(st, a
i
t) using an interaction function such as the

inner product of the embedding vectors. Then, given a particular state st, we can select the

optimal action at among the set of actions via

at = arg max
ait∈At

Q(st, a
i
t). (4.1)

More formally, let hl,s and hl,a denote the l-th hidden layer for state and action side neural

38

networks, respectively. For the state side, Wl,s and bl,s denote the linear transformation

weight matrix and bias vector between the (l − 1)-th and l-th hidden layers. Wl,a and bl,a

denote the equivalent parameters for the action side. In this study, the DRRN has L hidden

layers on each side. Note we are abusing notation somewhat here. In the description of the

tasks previously, st and at have been text strings. In the equations describing the DRRN,

they correspond to the vector representation of the text string, which in our experiments is

a bag-of-words model. A bag-of-words representation computes raw counts of each word in

vocabulary and computes a weighted average of word embeddings disregarding word orders.

h1,s = f(W1,sst + b1,s) (4.2)

hi1,a = f(W1,aa
i
t + b1,a) (4.3)

hl,s = f(Wl−1,shl−1,s + bl−1,s) (4.4)

hil,a = f(Wl−1,ah
i
l−1,a + bl−1,a) (4.5)

where f(·) is the nonlinear activation function at the hidden layers, which, for example, could

be chosen as tanh (x), and i = 1, 2, 3, ..., |At| is the action index. A general interaction func-

tion g(·) is used to approximate the Q-function values, Q(s, a), in the following parametric

form:

Q(s, ai; Θ) = g
(
hL,s, h

i
L,a

)
(4.6)

where Θ denotes all the model parameters. The interaction function could be an inner prod-

uct, a bilinear operation, or a nonlinear function such as a deep neural network. In our

experiments, the inner product and bilinear operation gave similar results, but the nonlinear

neural network using the concatenated state and action space embeddings degraded perfor-

mance. For simplicity, we present our experiments mostly using the inner product interaction

function.

The success of the DRRN in handling a natural language action space A lies in the

fact that the state-text and the action-texts are mapped into separate finite-dimensional

embedding spaces. The end-to-end learning process (discussed next) makes the embedding

39

Figure 4.2: PCA projections of text embedding vectors for state and associated action vectors
after 200, 400 and 600 training episodes. The state is “As you move forward, the people
surrounding you suddenly look up with terror in their faces, and flee the street.” Action 1
(good choice) is “Look up”, and action 2 (poor choice) is “Ignore the alarm of others and
continue moving forward.”

vectors in the two spaces more aligned for “good” (or relevant) action texts compared to

“bad” (or irrelevant) choices, resulting in a higher interaction function output (Q-function

value).

4.1.2 Learning the DRRN: Back propagation

To learn the DRRN, we use the “experience-replay” strategy [103], which uses a fixed ex-

ploration policy to interact with the environment to obtain a sample trajectory. Then, we

randomly sample a transition tuple (sk, ak, rk, sk+1), compute the temporal difference error

for sample k:

dk = rk + γmax
a
Q(sk+1, a; Θk−1)−Q(sk, ak; Θk−1),

40

Algorithm 1 Learning algorithm for DRRN

Initialize replay memory D to capacity |D|.

Initialize DRRN with small random weights.

Initialize game simulator and load dictionary.

for episode = 1, . . . ,M do

Restart game simulator.

Read raw state text and a list of action text from the simulator, and convert them to

representation s1 and a11, a
2
1, . . . , a

|A1|
1 . ai1 ∈ A1.

for t = 1, . . . , T do

Compute Q(st, a
i
t; Θ) for the list of actions using DRRN forward activation.

Select an action at based on probability distribution π(at = ait|st)

Execute action at in simulator

Observe reward rt. Read the next state text and the next list of action texts, and

convert them to representation st+1 and a1t+1, a
2
t+1, . . . , a

|At+1|
t+1 .

Store transition (st, at, rt, st+1,At+1) in D.

end for

Sample random mini-batch of transitions {(sk, ak, rk, sk+1, Ak+1)|k = 1, · · · , B} from

D.

Set yk =

rk if sk+1 is terminal

rk + γmaxa∈Ak+1
Q(sk+1, a; Θ)) otherwise

Perform a gradient descent step on
∑

k(yk−Q(sk, ak; Θ))2 with respect to the network

parameters Θ (Section 4.1.2). Back-propagation is performed only for ak even though

there are |Ak| actions at time k.

end for

and update the model according to the recursions:

Wv,k = Wv,k−1 + ηkdk ·
∂Q(sk, ak; Θk−1)

∂Wv

(4.7)

bv,k = bv,k−1 + ηkdk ·
∂Q(sk, ak; Θk−1)

∂bv
(4.8)

41

for v ∈ {s, a}. Expressions for ∂Q
∂Wv

, ∂Q
∂bv

and other algorithm details are given in Section

4.1.3. Random sampling essentially scrambles the trajectory from experience-replay into a

“bag-of-transitions”, which has been shown to avoid oscillations or divergence and achieve

faster convergence in Q-learning [119]. Since the models on the action side share the same

parameters, models associated with all actions are effectively updated even though the back

propagation is only over one action. We apply back propagation to learn how to pair the

text strings from the reward signals in an end-to-end manner. The representation vectors for

the state-text and the action-text are automatically learned to be aligned with each other in

the text embedding space from the reward signals. A summary of the full learning algorithm

is given in Algorithm 1. In the algorithm table, M is the number of episodes, T is the

length of an episode, B is the size of a mini-batch for computing the gradient, t is the time

index in an episode, while k denotes the index of a sample in the mini-batch. In the actual

implementation each iteration we generate multiple episodes of experience and then perform

multiple epochs of gradient descent in order to speed up with parallel computing.

Figure 4.2 illustrates learning with an inner product interaction function. We used Princi-

pal Component Analysis (PCA) to project the 100-dimension last hidden layer representation

(before the inner product) to a 2-D plane. The vector embeddings start with small values,

and after 600 episodes of experience-replay training, the embeddings are very close to the

converged embedding (4000 episodes). The embedding vector of the optimal action (Action

1) converges to a positive inner product with the state embedding vector, while Action 2

converges to a negative inner product.

4.1.3 Detailed Forward and Backward Formulas for DRRN

Let hl,s and hl,a denote the l-th hidden layer for state and action side neural networks,

respectively. For state side, Wl,s and bl,s denote the linear transformation weight matrix and

bias vector between the (l − 1)-th and l-th hidden layers. For actions side, Wl,a and bl,a

denote the linear transformation weight matrix and bias vector between the (l − 1)-th and

l-th hidden layers. The DRRN has L hidden layers on each side.

42

For the case where the interaction function is an inner product, the forward and backward

updates are as follows:

Forward:

h1,s = f(W1,sst + b1,s) (4.9)

hi1,a = f(W1,aa
i
t + b1,a), i = 1, 2, 3, ..., |At| (4.10)

hl,s = f(Wl−1,shl−1,s + bl−1,s), l = 2, 3, ..., L (4.11)

hil,a = f(Wl−1,ah
i
l−1,a + bl−1,a), i = 1, 2, 3, ..., |At|, l = 2, 3, ..., L (4.12)

Q(st, a
i
t) = h′L,sh

i
L,a (4.13)

where f(·) is the nonlinear activation function at the hidden layers, which is chosen as

tanh (x) = (1 − exp (−2x))/(1 + exp (−2x)), and At denotes the set of all actions at time

t. h′L,s denotes the transpose of hL,s. If using interaction functions other than the inner

product, Equation 4.13 will change (so as the backward formula).

Backward:

Note we only back propagate for actions that are actually taken. More formally, let at

be action the DRRN takes at time t, and denote

∆ = [Q(st, at)− (rt + γ max
a∈At+1

Q(st+1, a))]2/2. (4.14)

Denote δl,s = δbl,s = ∂Q/∂bl,s, δl,a = δbl,a = ∂Q/∂bl,a, and we have (by following chain rules):

δQ =
∂∆

∂Q
= Q(st, at)− (rt + γmax

a
Q(st+1, a)) (4.15)

δL,s = δQ · hL,a � (1− hL,s)� (1 + hL,s)

δl−1,s = W ′
l,sδl,s � (1− hl−1,s)� (1 + hl−1,s), l = 2, 3, ..., L

(4.16)

δL,a = δQ · hL,s � (1− hL,a)� (1 + hL,a)

δl−1,a = W ′
l,aδl,a � (1− hl−1,a)� (1 + hl−1,a), l = 2, 3, ..., L

(4.17)

43

δW1,s = ∂Q/∂W1,s = δ1,s · s′t

δWl,s = ∂Q/∂Wl,s = δl,s · h′l−1,s, l = 2, 3, ..., L

(4.18)

δW1,a = ∂Q/∂W1,a = δ1,a · a′t

δWl,a = ∂Q/∂Wl,a = δl,a · h′l−1,a, l = 2, 3, ..., L

(4.19)

where � denotes element-wise Hadamard product. For the cases where other interaction

functions are used, the first lines in Equation 4.16 and 4.17 will change.

4.2 DRRN on text games

We evaluate the DRRN with the two text games described in Chapter 3: a deterministic

text game task called “Saving John” and a larger-scale stochastic text game called “Machine

of Death” from a public archive.

In “Saving John” all actions are choice-based, for which the mapping from text strings to

at are clear. In “Machine of Death”, when actions are hypertext, the actions are substrings

of the state. In this case st is associated with the full state description, and at are given by

the substrings without any surrounding context. “Saving John” is a relatively short game

and stops after finite steps. For the text game “Machine of Death”, we restrict an episode to

be no longer than 500 steps. For text input, we use bag-of-words as features, with different

vocabularies for the state side and action side.

4.2.1 Experiment setup

We apply DRRNs with both 1 and 2 hidden layer structures. In most experiments, we use

dot-product as the interaction function and set the hidden dimension to be the same for

each hidden layer in both state and action spaces. We compare DRRNs with 20, 50 and 100-

dimension hidden layers and build learning curves during experience-replay training. The

learning rate is constant: ηt = 0.001. In testing, as in training, we apply softmax selection.

We record average final rewards as performance of the model.

44

The DRRN is compared to multiple baselines: a linear model, two max-action DQNs (MA

DQN) (L = 1 or 2 hidden layers), and two per-action DQNs (PA DQN) (again, L = 1, 2).

All baselines use the same Q-learning framework with different function approximators to

predict Q(st, at) given the current state and actions. For the linear and MA DQN baselines,

the input is the same text-based state and action vector representation as in the DRRN, and

the number of outputs is equal to the maximum number of actions. When there are fewer

actions than the maximum, the highest scoring available action is used. For the linear model,

there is no hidden layer so results are irrelevant to hidden dimension. The PA DQN baseline

takes each pair of state-action texts as input, and generates a corresponding Q-value, similar

to the DRRN. In terms of number of parameters in the weight matrices, the DRRN uses

significantly fewer parameters than the MA DQN, and is on par with the PA DQN.

We use softmax selection, which is widely applied in practice, to trade-off exploration

vs. exploitation. Specifically, for each experience-replay, we first generate 200 episodes of

data (about 3K tuples in “Saving John” and 16K tuples in “Machine of Death”) using

the softmax selection rule, where we set α = 0.2 for the first game and α = 1.0 for the

second game. The α is picked according to an estimation of range of the optimal Q-values.

We then shuffle the generated data tuples (st, at, rt, st+1) update the model as described

in Section 4.1.2. The model is trained with multiple epochs for all configurations, and is

evaluated after each experience-replay. The discount factor γ is set to 0.9. For DRRN and

all baselines, network weights are initialized with small random values. To prevent algorithms

from “remembering” state-action ordering and make choices based on action wording, each

time the algorithm/player reads text from the simulator, we randomly shuffle the list of

actions.1 This will encourage the algorithms to make decisions based on the understanding

of the texts that describe the states and actions.

45

0 500 1000 1500 2000 2500 3000 3500
Number of episodes

-10

-5

0

5

10

15

20

Av
er

ag
e

re
w

ar
d

DRRN (2-hidden)
DRRN (1-hidden)
PA DQN (2-hidden)
MA DQN (2-hidden)

(a) Game 1: “Saving John”

0 500 1000 1500 2000 2500 3000 3500 4000
Number of episodes

-15

-10

-5

0

5

10

15

Av
er

ag
e

re
w

ar
d

DRRN (2-hidden)
DRRN (1-hidden)
PA DQN (2-hidden)
MA DQN (2-hidden)

(b) Game 2: “Machine of Death”

Figure 4.3: Learning curves of the two text games. All systems use L = 2 and 100-
dimensional hidden layers.

4.2.2 Performance

In Figure 4.3, we show the learning curves of different models, where the dimension of the

hidden layers in the DQNs and DRRN are all set to 100. The error bars are obtained by

running 5 independent experiments. The proposed methods and baselines all start at about

the same performance (roughly -7 average rewards for “Saving John”, and roughly -8 average

rewards for “Machine of Death”), which is the random guess policy. After around 4000

episodes of experience-replay training, all methods converge. The DRRN converges much

faster than the other three baselines and achieves a higher average reward. We hypothesize

this is because the DRRN architecture is better at capturing relevance between state text and

action text. The faster convergence for “Saving John” may be due to the smaller observation

space and/or the deterministic nature of its state transitions (in contrast to the stochastic

transitions in the other game).

1When in a specific state, the simulator presents the possible set of actions in random order, i.e. they
may appear in a different order the next time a player is in this same state.

46

0 1000 2000 3000 4000
Number of episodes

-10

-5

0

5

10

15

20

Av
er

ag
e

re
w

ar
d

DRRN (2-hidden)
DRRN (2-hidden tying)

Figure 4.4: Learning curves of shared state-action embedding vs. proposed DRRN in “Ma-
chine of Death”

We also train DRRN with shared state and action embedding, on “Machine of Death”.

This is done by tying the parameter on the state side and the action side. The learning curve

is shown in Figure 4.4. For the first 1000 episodes, parameter tying gives faster convergence,

but learning curve also has high variance and unstable.

The final performance (at convergence) for both baselines and proposed methods are

shown in Tables 4.1 and 4.2. We set the same hidden dimension for both state and action

embeddings and test for different model sizes with 20, 50, and 100 dimensions in the hidden

layers. The DRRN performs consistently better than all baselines, and often with a lower

variance. For “Machine of Death”, due to the complexity of the underlying state transition

function, we cannot compute the exact optimal policy score. To provide more insight into

the performance, we averaged scores of 8 human players for initial trials (novice) and after

gaining experience, yielding scores of −5.5 and 16.0, respectively. The experienced players

do outperform our algorithm. The converged performance is higher with two hidden layers

for all models. However, deep models also converge more slowly than their 1 hidden layer

47

Eval metric Average reward

hidden dimension 20 50 100

Linear 4.4 (0.4)

PA DQN (L = 1) 2.0 (1.5) 4.0 (1.4) 4.4 (2.0)

PA DQN (L = 2) 1.5 (3.0) 4.5 (2.5) 7.9 (3.0)

MA DQN (L = 1) 2.9 (3.1) 4.0 (4.2) 5.9 (2.5)

MA DQN (L = 2) 4.9 (3.2) 9.0 (3.2) 7.1 (3.1)

DRRN (L = 1) 17.1 (0.6) 18.3 (0.2) 18.2 (0.2)

DRRN (L = 2) 18.4 (0.1) 18.5 (0.3) 18.7 (0.4)

Table 4.1: The final average rewards and standard deviations on “Saving John”.

Eval metric Average reward

hidden dimension 20 50 100

Linear 3.3 (1.0)

PA DQN (L = 1) 0.9 (2.4) 2.3 (0.9) 3.1 (1.3)

PA DQN (L = 2) 1.3 (1.2) 2.3 (1.6) 3.4 (1.7)

MA DQN (L = 1) 2.0 (1.2) 3.7 (1.6) 4.8 (2.9)

MA DQN (L = 2) 2.8 (0.9) 4.3 (0.9) 5.2 (1.2)

DRRN (L = 1) 7.2 (1.5) 8.4 (1.3) 8.7 (0.9)

DRRN (L = 2) 9.2 (2.1) 10.7 (2.7) 11.2 (0.6)

Table 4.2: The final average rewards and standard deviations on “Machine of Death”.

versions, as shown for the DRRN in Figure 4.3.

Besides an inner-product, we also experimented with more complex interaction functions:

a) a bilinear operation with different action side dimensions; and b) a non-linear neural

network using the concatenated state and action space embeddings as input and trained

in an end-to-end fashion to predict Q values. For different configurations, we fix the state

side embedding to be 100 dimensions and vary the action side embedding dimensions. The

48

Eval metric Average reward

hidden dimension 20 50 100

Inner product 9.2 (2.1) 10.7 (2.7) 11.2 (0.6)

Bilinear 8.9 (1.8) 9.7 (1.9) 11.3 (1.9)

Concatenation + NN 8.7 (1.4) 9.3 (0.4) 9.8 (2.5)

Table 4.3: The final average rewards and standard deviations on “Machine of Death”, using
DRRN (L = 2) with different interaction functions. “Bilinear” refers to computing Q-
values using a bilinear operation, with a 100-dimension state vector and different embedding
dimensions for the action side. “Concatenation + NN” refers to computing the Q function
using a NN with the concatenation of state and action embeddings as input.

bilinear operation gave similar results, but the concatenation input to a DNN degraded

performance. The results are shown in Table 4.3. Similar behaviors have been observed on

a different task [108].

To provide some insight into the model, we show examples of state-action pairs in the

two text games, in Table 4.4 and Table 4.5. Those values make sense in their game context,

respectively.

4.2.3 Actions with paraphrased descriptions

To investigate how our models handle actions with “unseen” natural language descriptions,

we had two people paraphrase all actions in the game “Machine of Death” (used only in

the testing phase), except a few single-word actions whose synonyms are out-of-vocabulary

(OOV). The word-level OOV rate of paraphrased actions is 18.6%, and standard 4-gram

BLEU score between the paraphrased and original actions is 0.325. The resulting 153 para-

phrased action descriptions are associated with 532 unique state-action pairs. The full set of

paraphrases is given in https://github.com/jvking/text-games/blob/master/simulators

/machineofdeath originalActions.txt and https://github.com/jvking/text-games/

blob/master/simulators/machineofdeath paraphrasedActions.txt.

49

State Actions (with Q values)

A wet strand of hair hinders my vision and I’m back in the

water. Sharp pain pierces my lungs. How much longer do

I have? 30 seconds? Less? I need to focus. A hand comes

into view once more.

I still don’t know what to do. (-8.981)

Reach for it. (18.005)

”Me:” Hello Sent: today ”Cherie:” Hey. Can I call you?

Sent: today

Reply ”I’ll call you” (14.569) No (-

9.498)

”You don’t hold any power over me. Not anymore.” Lucre-

tia raises one eyebrow. The bar is quiet. ”I really wish I

did my hair today.” She twirls a strand. ”I’m sorry,” ”Save

it.” //Yellow Submarine plays softly in the background.//

”I really hate her.” ”Cherie? It’s not her fault.” ”You’ll be

sorry,” ”Please stop screaming.”

I laugh and she throws a glass of water

in my face. (16.214) I look away and

she sips her glass quietly. (-7.986)

My dad left before I could remember. My mom worked all

the time but she had to take care of her father, my grandpa.

The routine was that she had an hour between her morning

shift and afternoon shift, where she’d make food for me to

bring to pops. He lived three blocks away, in a house with

red steps leading up to the metal front door. Inside, the

stained yellow wallpaper and rotten oranges reeked of mold.

I’d walk by myself to my grandfather’s and back. It was

lonely sometimes, being a kid and all, but it was nothing

I couldn’t deal with. It’s not like he abused me, I mean it

hurt but why wouldn’t I fight back? I met Adam on one

of these walks. He made me feel stronger, like I can face

anything.

Repress this memory (-8.102) Why

didn’t I fight back? (10.601) Face

Cherie (14.583)

Table 4.4: Q values (in parentheses) for state-action pair from “Saving John”, using trained
DRRN. High Q-value actions are more cooperative actions thus more likely leading to better
endings

50

Figure 4.5: Scatterplot and strong correlation between Q-values of paraphrased actions versus
original actions

We apply a well-trained 2-layer DRRN model (with hidden dimension 100), and predict

Q-values for each state-action pair with fixed model parameters. Figure 4.5 shows the cor-

relation between Q-values associated with paraphrased actions versus original actions. The

predictive R-squared is 0.95, showing a strong positive correlation. We also run Q-value

correlation for the NN interaction and pR2 = 0.90. For baseline MA-DQN and PA-DQN,

their corresponding pR2 is 0.84 and 0.97, respectively, indicating they also have some gen-

eralization ability. This is confirmed in the paraphrasing-based experiments too, where the

test reward on the paraphrased setup is close to the original setup. This supports the claim

that deep learning is useful in general for this language understanding task, and our findings

show that a decoupled architecture most effectively leverages that approach.

51

In Table 4.6 we provide examples with predicted Q-values of original descriptions and

paraphrased descriptions. We also include alternative action descriptions with in-vocabulary

words that will lead to positive / negative / irrelevant game development at that particular

state. Table 4.6 shows actions that are more likely to result in good endings are predicted

with high Q-values. This indicates that the DRRN has some generalization ability and gains

a useful level of language understanding in the game scenario.

We use the baseline models and the DRRN model trained with the original action de-

scriptions for “Machine of Death”, and test on paraphrased action descriptions with the

underlying state transition mechanism unchanged. The only change to the game interface

is that during testing, every time the player reads the actions from the game simulator, it

reads the paraphrased descriptions and performs selection based on these paraphrases. Since

the texts in test time are “unseen” to the player, a good model needs to have some level

of language understanding, while a naive model that memorizes all unique action texts in

the original game will do poorly. The results for these models are shown in Table 4.7. All

methods have a slightly lower average reward in this setting (10.5 vs. 11.2 for the original ac-

tions), but the DRRN still gives a high reward and significantly outperforms other methods.

This shows that the DRRN can generalize well to “unseen” natural language descriptions of

actions.

4.3 DRRN for Reddit thread tracking K = 1

In this section, we tested the DRRN on the Reddit thread tracking task with K = 1. This

is another application with natural language action space, and formulation of this problem

is discussed in Section 3.2. For text preprocessing, we remove punctuation and lowercase

capital letters. Since K = 1, each action ait is selecting one comment cit. The state st is a

one-thread sequence of history comments that were selected. For each state st and action ait,

we use a bag-of-words representation with the most frequent 5K vocabulary in all networks.

We compare the DRRN with two DQN baselines, MA-DQN and PA-DQN, on 5 subreddits

(askscience / askmen / todayilearned / askwomen / politics). The actions in MA-DQN are

52

random shuffled to avoid temporal information. We set the window size N = 10.

For the Q-learning agent, fully-connected neural networks are used for text embedding,

and each network has L = 2 hidden layers, each with hidden dimension 20. In our prelim-

inary experiments on askscience, hidden dimension 20 works well while 50 or 100 leads to

overtraining. ε-greedy is used in exploration-exploitation, and we keep ε = 0.1 throughout

training and testing. The discount factor γ = 0.9 and experience replay memory is set to

10,000. For each experience replay, 500 episodes are generated and stored in a first-in-first-

out fashion. Minibatch gradient descent is used with a batch size of 100, and we use the

Adam optimization scheduler [82] with learning rate ηt = 0.00001. In the DRRN, we use an

inner product as the pairwise interaction function.

In Table 4.8, we show test performance for DRRN and baselines together with results for

the random policy and the oracle upper bound. The results represent the average (and stan-

dard deviation) over 5 runs, where each run is an average over 1000 episodes. Upperbounds

are estimated by searching through each discussion tree to find K max Karma discussion

threads (overlapped comments are counted only once).2 We see a significant and consistent

gain in using the DRRN over all baseline performances. In Reddit popularity prediction

and tracking, PA-DQN performs better than MA-DQN. However, all these models are still

far from the oracle upper bound, which is expected. This experiment serves as additional

evidence that DRRN works well in a natural language action space.

According to our experiments, myopically picking direct replies with the highest (oracle)

karma only gives 50% to 60% of the upperbound if we do a long term search in an offline

constructed tree. Testing on the askscience subreddit, the performance of an automatic

myopic policy (supervised learning with karma scores as labels) is significantly worse than

reinforcement learning using the same feature set, which supports our claim that long-term

dependency indeed matters. An example is given in Figure 3.3. This serves as a justifi-

cation that reinforcement learning is an appropriate approach for modeling popularity of a

2This upper bound may not be attainable in a real-time setting, because the greedy search is according
to tree structures rather than time.

53

discussion thread.

54

State Actions (with Q values)

Peak hour ended an hour or so ago, alleviating the feeling

of being a tinned sardine that?s commonly associated with

shopping malls, though there are still quite a few people

busily bumbling about. To your left is a fast food restau-

rant. To the right is a UFO catcher, and a poster is hanging

on the wall beside it. Behind you is the one of the mall’s

exits. In front of you stands the Machine. You’re carrying

4 dollars in change.

fast food restaurant (1.094) the Ma-

chine (3.708) mall’s exits (0.900) UFO

catcher (2.646) poster (1.062)

You lift the warm mug to your lips and take a small sip of

hot tea.

Ask what he was looking for. (3.709)

Ask about the blood stains. (7.488)

Drink tea. (5.526) Wait. (6.557)

As you move forward, the people surrounding you suddenly

look up with terror in their faces, and flee the street.

Ignore the alarm of others and continue

moving forward. (-21.464) Look up.

(16.593)

Are you happy? Is this what you want to do? If you didn’t

avoid that sign, would you be satisfied with how your life

had turned out? Sure, you’re good at your job and it pays

well, but is that all you want from work? If not, maybe it’s

time for a change.

Screw it. I’m going to find a new life

right now. It’s not going to be easy,

but it’s what I want. (23.205) Maybe

one day. But I’m satisfied right now,

and I have bills to pay. Keep on going.

(One minute) (14.491)

You slam your entire weight against the man, making him

stumble backwards and drop the chair to the ground as a

group of patrons race to restrain him. You feel someone

grab your arm, and look over to see that it?s Rachel. Let’s

get out of here, she says while motioning towards the exit.

You charge out of the bar and leap back into your car,

adrenaline still pumping through your veins. As you slam

the door, the glove box pops open and reveals your gun.

Grab it and hide it in your jacket before

Rachel can see it. (21.885) Leave it.

(1.915)

Table 4.5: Q values (in parentheses) for state-action pair from “Machine of Death”, using
trained DRRN

55

Text (with predicted Q-values)

State As you move forward, the people surrounding you suddenly look

up with terror in their faces, and flee the street.

Actions in the original game Ignore the alarm of others and continue moving forward. (-21.5)

Look up. (16.6)

Paraphrased actions (not origi-

nal)

Disregard the caution of others and keep pushing ahead. (-11.9)

Turn up and look. (17.5)

Positive actions (not original) Stay there. (2.8) Stay calmly. (2.0)

Negative actions (not original) Screw it. I’m going carefully. (-17.4) Yell at everyone. (-13.5)

Irrelevant actions (not original) Insert a coin. (-1.4) Throw a coin to the ground. (-3.6)

Table 4.6: Predicted Q-value examples

Eval metric Average reward

hidden dimension 20 50 100

PA DQN (L = 2) 0.2 (1.2) 2.6 (1.0) 3.6 (0.3)

MA DQN (L=2) 2.5 (1.3) 4.0 (0.9) 5.1 (1.1)

DRRN (L = 2) 7.3 (0.7) 8.3 (0.7) 10.5 (0.9)

Table 4.7: The final average rewards and standard deviations on the paraphrased revision of
the game “Machine of Death”.

models askscience askmen todayilearned askwomen politics

random policy 95.3 (1.0) 36.8 (1.0) 112.8 (2.9) 37.6 (0.9) 43.3 (0.9)

MA-DQN (L=2) 171.4 (5.2) 40.7 (0.8) 142.2 (6.2) 39.5 (0.5) 48.7 (1.7)

PA-DQN (L=2) 359.1(19.8) 42.4 (2.3) 204.4 (6.7) 44.6 (1.9) 54.2 (2.7)

DRRN (L=2) 473.9 (9.3) 43.5 (0.8) 210.8 (9.1) 46.4 (1.5) 60.1 (2.9)

upper bound 1665.8 (33.0) 334.6 (8.2) 1425.5 (29.5) 271.1 (11.3) 557.0 (15.7)

Table 4.8: A performance comparison (across different subreddits) with N = 10, K = 1. All
systems have hidden dimension 20.

56

Chapter 5

DRL WITH A COMBINATORIAL ACTION SPACE

The problem of a combinatorial natural language action space arises in many applications.

For example, in real-time news feed recommendation, a user may want to read diverse topics

of interest, and an action (i.e. recommendation) from the computer agent would consist of

a set of news articles that are not all similar in topics [193]. In advertisement placement, an

action is a selection of several ads to display, and bundling with complementary products

might receive a higher click-through-rate than displaying all similar popular products.

In this chapter, we investigate a combinatorial natural language action space with the

Reddit task, i.e. predicting and tracking popular discussion threads on Reddit. In contrast

to the case discussed in the previous chapter, the agent can choose K comments to track out

of the recent N observed (vs. only choosing one), so there are
(
N
K

)
possible actions. There

are two challenges associated with a combinatorial action space. One is the development of

a Q-function framework for estimating the long-term reward when the K comments (sub-

actions) are inter-dependent. The other is the potentially high computational complexity,

due to evaluating Q over every possible pair of (st, a
i
t).

The work in this chapter was published in two venues. Proposing novel architectures

for better modeling the Q-function is presented in [59], and using two-stage Q-learning for

reducing search complexity is presented in [62].

5.1 Model Q-function

With the real-time setting, it is clear that action at will affect the next state st+1 and

furthermore the future expected reward. The action at consists of K comments (sub-actions),

making modeling Q-values Q(st, at) difficult. In the previous chapter, it is shown that the

57

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧௜

ℎଵ

ℎଶ

𝑄௧(𝑠, 𝑎௜)

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧௜

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎௜)

ℎଵ,௔௜

ℎଶ,௔௜

pairwise interaction function
(e.g. inner product)

(a) Per-action DQN

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧௜

ℎଵ

ℎଶ

𝑄௧(𝑠, 𝑎௜)

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧௜

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎௜)

ℎଵ,௔௜

ℎଶ,௔௜

pairwise interaction function
(e.g. inner product)

(b) DRRN

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧௜

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎௜)

ℎଵ,௖ଵ

ℎଶ,௖ଵ

pairwise interaction function
(e.g. inner product)

ℎଵ,௖ଶ

ℎଶ,௖ଶ

ℎଵ,௖ଷ

ℎଶ,௖ଷ

𝑄௧(𝑠, 𝑐௜)
summation

(c) DRRN-Sum

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧௜

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎௜)

ℎଵ,௖ଵ

ℎଶ,௖ଵ

pairwise interaction function
(e.g. inner product)

ℎଵ,௖ଶ

ℎଶ,௖ଶ

ℎଵ,௖ଷ

ℎଶ,௖ଷ

ℎଷ,௔௜

bidirectional LSTM

bidirectional LSTM

ℎ௧ିଵ ℎ௧ ℎ௧ାଵ

ℎ௧ିଵ ℎ௧ ℎ௧ାଵ

output

input

(d) DRRN-BiLSTM

Figure 5.1: Different deep Q-learning architectures

Deep Reinforcement Relevance Network (DRRN, Figure 5.1(b)), i.e. two separate deep

neural networks for modeling state embedding and action embedding, performs better than

per-action DQN (PA-DQN in Figure 5.1(a)), as well as other DQN variants for dealing with

natural language action spaces.

Our baseline models include Linear, PA-DQN and DRRN. We concatenate the K sub-

actions/comments to form the action representation. The Linear and PA-DQN (Figure

5.1(a)) take as input a concatenation of state and action representations, and model a single

Q-value Q(st, at) using linear or DNN function approximations. The DRRN consists of a

pair of DNNs, one for the state-text embedding and the other for action-text embeddings,

58

which are then used to compute Q(st, at) via a pairwise interaction function (Figure 5.1(b)).

One simple alternative approach by utilizing this combinatorial structure is to compute

an embedding for each sub-action cit. We can then model the value in picking a particular

sub-action, Q(st, c
i
t), through a pairwise interaction between the state and this sub-action.

Q(st, c
i
t) represents the expected accumulated future rewards by including this sub-action.

The agent then greedily picks the top-K sub-actions with highest values to achieve the

highest Q(st, at). In this approach, we are assuming the long-term rewards associated with

sub-actions are independent of each other. More specifically, greedily picking the top-K

sub-actions is equivalent to maximizing the following action-value function:

Q(st, at) =
K∑
i=1

Q(st, c
i
t) (5.1)

while satisfying (3.1). We call this proposed method DRRN-Sum, and its architecture is

shown in Figure 5.1(c). Similarly as in DRRN, we use two networks to embed state and

actions separately. However, for different sub-actions, we keep the network parameters tied.

We also use the same top layer dimension and the same pairwise interaction function for all

sub-actions.

In the case of a linear additive interaction, such as an inner product or bilinear operation,

Equation (5.1) is equivalent to computing the interaction between the state embedding and

an action embedding, where the action embedding is obtained linearly by summing over

K sub-action embeddings. When sub-actions have strong correlation, this independence

assumption is invalid and can result in a poor estimation of Q(st, at). For example, most

people are interested in the total information stored in the combined action at. Due to

content redundancy in the sub-actions c1t , c
2
t , · · · , cKt , we expect Q(st, at) to be smaller than∑

iQ(st, c
i
t).

To come up with a general model for handling a combinatorial action-value function, we

further propose the DRRN-BiLSTM (Figure 5.1(d)). In this architecture, we use a DNN to

generate an embedding for each comment. Then a Bidirectional Long Short-Term Memory

[49] is used to combine a sequence of K comment embeddings. As the Bidirectional LSTM

59

has a larger capacity, we expect it will capture more details on how the embeddings for the

sub-actions combine into an action embedding. Note that both of our proposed methods

(DRRN-Sum and DRRN-BiLSTM) can handle a varying value of K, while for the DQN and

DRRN baselines, we need to use a fixed K in training and testing.

5.2 Reduce search complexity

In the case of deep Q-learning, most of the time has been spent on the forward-pass from(
N
K

)
actions to

(
N
K

)
Q-values. For back-propagation, since we only need to back-propagate

one particular action the agent has chosen, complexity is not affected by the combinatorial

action space.

One solution to reduce computational complexity is simply to randomly pick a fixed

number, say m candidate actions, and perform a max operation. While this is widely used

in the reinforcement learning literature, it is problematic in our application because the large

and highly skewed action space makes it likely that good actions are missed. Here we propose

to use two-stage Q-learning for reducing search complexity using coarse-to-fine models. More

specifically, we can rewrite the max operation as:

max
at∈At

Q2(st, at) ≈ max
at∈Bt

Q2(st, at)

where

Bt =
m

arg max
at∈At

Q1(st, at) (5.2)

where arg maxmat∈At
means picking the top-m actions from the whole action set At.

In the case of Q1 being DRRN-Sum, we can rewrite Q1(st, at) as:

Q1(st, at) =
K∑
i=1

Q0(st, c
i
t) =

K∑
i=1

qit

which is simplified by precomputing sub-action value qit = Q0(st, c
i
t), i = 1, · · · , N . Q0 is the

simple DRRN introduced in Chapter 4.

60

To further elaborate, the idea is to use a function Q1 to first perform a quick but rough

ranking of ait. The second function Q2, which can be more sophisticated, is used to rerank

the top-m candidate actions. This ensures that all comments are explored, and at the

same time, the architecture can be sophisticated enough to capture detailed dependencies

between sub-actions, such as information redundancy. In our experiments, we pick Q1 to

be DRRN-Sum and Q2 to be DRRN-BiLSTM. While the independence assumption on sub-

action interdependency is too strong, the DRRN-Sum model is relatively easy to train. Since

the parameters on the action side are tied for different sub-actions, we can train a DRRN with

K = 1 and then apply the model for each pair of (st, c
i
t). This will result in N sub-action Q-

values Q0(st, c
i
t), i = 1, 2, · · · , N . Thus computing Equation 5.2 is equivalent to retrieving the

top m from
(
N
K

)
values. Thus, we avoid the huge computational cost of first generating

(
N
K

)
actions from N sub-actions, then applying a general Q-function approximation to evaluate

all of them. We used the DRRN with K = 1 from Chapter 4 and then copy the parameters

to DRRN-Sum, which can be used to evaluate the full action space. The whole two-stage Q

framework is summarized in Algorithm 2.

5.3 Experiments

5.3.1 Datasets and Experimental Configurations

Our data consists of 5 subreddits (askscience, askmen, todayilearned, worldnews, nfl) with

diverse topics and genres. We report the random policy performances and oracle upper

bound performances on the test set (averaged over 10,000 episodes) in Table 5.1 and Table

5.2. Upper bounds are estimated by greedily searching through each discussion tree to find

K max karma discussion threads (overlapped comments are counted only once). The upper

bound performances are obtained using stabilized karma scores and offline constructed tree

structure. This upper bound may not be attainable in real-time setting. The mean and

standard deviation are obtained by 5 independent runs, as in the K = 1 experiments. In all

our experiments we set N = 10 as in Chapter 4.

61

Subreddit Random Upper bound

askscience 321.3 (7.0) 2109.0 (16.5)

askmen 132.4 (0.7) 651.4 (2.8)

todayilearned 390.3 (5.7) 2679.6 (30.1)

worldnews 205.8 (4.5) 1853.4 (44.4)

nfl 237.1 (1.4) 1338.2 (13.2)

askwomen 128.9 (2.3) 574.0 (10.9)

politics 149.3 (1.7) 967.7 (13.6)

Table 5.1: Mean and standard deviation of random and upper-bound performance (with
N = 10, K = 3) across different subreddits.

K Random Upper bound

2 201.0 (2.1) 1991.3 (2.9)

3 321.3 (7.0) 2109.0 (16.5)

4 447.1 (10.8) 2206.6 (8.2)

5 561.3 (18.8) 2298.0 (29.1)

Table 5.2: Mean and standard deviation of random and upper-bound performance on
askscience, with N = 10 and K = 2, 3, 4, 5.

62

In terms of the Q-learning agent, fully-connected neural networks are used for text em-

beddings. The network has L = 2 hidden layers, each with 20 nodes, and model parameters

are initialized with small random numbers. ε-greedy is used for exploration-exploitation, and

we keep ε = 0.1 throughout online training and testing. We pick the discount factor γ = 0.9.

During online training, we use experience replay [102] and the memory size is set to 10,000

tuples of (st, at, rt+1, st+1). For each experience replay, 500 episodes are generated and stored

in a first-in-first-out fashion, and multiple epochs are trained for each model. Minibatch

stochastic gradient descent is implemented with a batch size of 100. The learning rate is

kept constant: ηt = 0.000001.

Two series of experiments are conducted. First, we assess the Q function alternatives

using random sampling in the search with m = 10. Then, the two-stage Q function is

evaluated. The proposed BiLSTM Q function is compared with four baseline models: Linear,

per-action DQN (PA-DQN), DRRN, and DRRN-Sum. For both Linear and PA-DQN, the

state and comments are concatenated as an input. For the DRRN, DRRN-Sum, and DRRN-

BiLSTM, we use an inner product as the pairwise interaction function between the state and

action vectors.

5.3.2 Results Using Random Sampling

In Figure 5.2 we provide learning curves of different models on the askscience subreddit

during online learning. In this experiment, we set N = 10, K = 3. Each curve is obtained by

averaging over 3 independent runs, and the error bars are also shown. All models start with

random performance, and converge after approximately 15 experience replays. The DRRN-

Sum converges as fast as baseline models, with better converged performance. DRRN-

BiLSTM converges slower than other methods, but with the best converged performance.

After we train all the models on the training set, we fix the model parameters and apply

(deploy) on the test set, where the models predict which action to take but no reward is

shown until evaluation. The test performance is averaged over 1000 episodes, and we report

mean and standard deviation over 5 independent runs.

63

0 5 10 15
Number of replays

300

400

500

600

700

800

900

R
ew

ar
ds

Random
Linear
PA-DQN
DRRN
DRRN-Sum
DRRN-BiLstm

Figure 5.2: Learning curves of baselines and proposed methods on “askscience”

On askscience, we try multiple settings with N = 10, K = 2, 3, 4, 5 and the results are

shown in Table 5.3. Both DRRN-Sum and DRRN-BiLSTM consistently outperform baseline

methods. The DRRN-BiLSTM performs better with larger K, probably due to the greater

chance of redundancy in combining more sub-actions.

We also perform online training and test across different subreddits. With N = 10, K =

3, the test performance gains over the linear baseline are shown in Figure 5.3. Again,

the test performance is averaged over 1000 episodes, and we report mean and standard

deviation over 5 independent runs. The findings are consistent with those for askscience.

Since different subreddits may have very different karma scores distributions and language

style, this suggests the algorithms apply to different text genres.

In actual model deployment, a possible scenario is that users may have different requests.

For example, a user may ask the agent to provide K = 2 discussion threads on one day, due

to limited reading time, and ask the agent to provide K = 5 discussion threads on the other

day. For the baseline models (Linear, PA-DQN, DRRN), we will need to train separate

64

K Linear PA-DQN DRRN DRRN-Sum DRRN-BiLSTM

2 553.3 (2.8) 556.8 (14.5) 553.0 (17.5) 569.6 (18.4) 573.2 (12.9)

3 656.2 (22.5) 668.3 (19.9) 694.9 (15.5) 704.3 (20.1) 711.1 (8.7)

4 812.5 (23.4) 818.0 (29.9) 828.2 (27.5) 829.9 (13.2) 854.7 (16.0)

5 861.6 (28.3) 884.3 (11.4) 921.8 (10.7) 942.3 (19.1) 980.9 (21.1)

Table 5.3: On askscience, average karma scores and standard deviation of baselines and
proposed methods (with N = 10)

0

20

40

60

80

100

120

140

askscience askmen todayilearned worldnews nfl

A
ve

ra
ge

 r
ew

ar
d

 (
K

ar
m

a
sc

o
re

s)

Linear PA-DQN DRRN DRRN-Sum DRRN-BiLSTM

Figure 5.3: Average karma score gains over the linear baseline and standard deviation across
different subreddits (with N = 10, K = 3).

models for different K’s. The proposed methods (DRRN-Sum and DRRN-BiLSTM), on

the other hand, can easily handle a varying K. To test whether the performance indeed

generalizes well, we train proposed models on askscience with N = 10, K = 3 and test them

with N = 10, K ∈ 2, 4, 5, as shown in Table 5.4. Compared to the proposed models that

are specifically trained for these K’s (Table 5.3), the generalized test performance indeed

degrades, as expected. However, in many cases, our proposed methods still outperform all

three baselines (Linear, PA-DQN and DRRN) that are trained specifically for these K’s.

This shows that the proposed methods can generalize to varying K’s even if it is trained on

65

K DRRN-Sum DRRN-BiLSTM

2 538.5 (18.9) 551.2 (10.5)

4 819.1 (14.7) 829.9 (11.1)

5 921.6 (15.6) 951.3 (15.7)

Table 5.4: On askscience, average karma scores and standard deviation of proposed methods
trained with K = 3 and test with different K’s

State text (partially shown)

Are there any cosmological phenomena that we strongly suspect will occur, but the

universe just isn’t old enough for them to have happened yet?

Comments (sub-actions) (partially shown)

[1] White dwarf stars will eventually stop emitting light and become black dwarfs.

[2] Yes, there are quite a few, such as: White dwarfs will cool down to black dwarfs.

Table 5.5: An example state and its sub-actions

a particular value of K.

In Table 5.5, we show an anecdotal example with state and sub-actions. The two sub-

actions are strongly correlated and have redundant information. By combining the second

sub-action compared to choosing just the first sub-action alone, DRRN-Sum and DRRN-

BiLSTM predict 86% and 26% relative increase in action-value, respectively. Since these two

sub-actions are highly redundant, we hypothesize DRRN-BiLSTM is better than DRRN-Sum

at capturing interdependency between sub-actions.

5.3.3 Two-stage Q-learning

In this subsection we study the effect of two-stage Q-learning. On askscience, we try multiple

settings with K = 2, 3, 4, 5 and the results are shown in Table 5.6. We compare the proposed

two-stage Q-learning with two single-stage Q-learning baselines. The first baseline, following

66

Bt random all DRRN-Sum

Q2 DRRN-BiLSTM DRRN-Sum DRRN-BiLSTM

K=2 573.2 (12.9) 663.3 (8.7) 676.9 (5.5)

K=3 711.1 (8.7) 793.1 (8.1) 833.9 (5.7)

K=4 854.7 (16.0) 964.5 (12.0) 987.1 (12.1)

K=5 980.9 (21.1) 1099.4 (15.9) 1101.3 (13.8)

Table 5.6: A performance comparison (across different K’s on askscience subreddit)

the method in Section 5.3.2, uses a random subsampling approach to obtain Bt (with m = 10)

and takes the max over them using DRRN-BiLSTM. The second baseline uses DRRN-Sum

and explores the whole action space.1 The proposed two-stage Q-learning uses DRRN-Sum

for picking a Bt and DRRN-BiLSTM for reranking. We observe a large improvement by

switching from “random” to “all”, showing that exploring the entire action space is important

in this task. There is a consistent gain by using two-stage Q-learning instead of a single-stage

Q with DRRN-Sum. This shows that using a more sophisticated value function for reranking

also helps with performance.

In Table 5.7, we compare two-stage Q-learning with the two baselines across different

subreddits, with N = 10, K = 3. The findings are consistent with those for askscience. Since

different subreddits may have very different karma score distributions and language style,

our results suggest that the algorithm applies well to different community interaction styles.

1We also tried to compare training a single DRRN-BiLSTM with the whole action space. However this is
intractable both in runtime and experience replay memory usage. Training DRRN-BiLSTM with a larger
subspace (sampled with m = 20 and m = 50) and testing on the whole action space, however, degrades
performance compared to the two-stage Q-learning approach. We hypothesize this is due to mismatch in
training and testing.

67

Bt random all DRRN-Sum

Q2 DRRN-BiLSTM DRRN-Sum DRRN-BiLSTM

askscience 711.1 (8.7) 793.1 (8.1) 833.9 (5.7)

askmen 139.0 (3.6) 142.5 (2.3) 148.0 (5.5)

todayilearned 606.9 (15.8) 679.4 (11.4) 697.9 (9.4)

askwomen 135.0 (1.3) 145.9 (2.4) 149.6 (3.3)

politics 177.9 (3.3) 180.6 (6.3) 204.7 (4.2)

Table 5.7: A performance comparison (across different subreddits) with K = 3, N = 10

5.3.4 Cost Comparisons

During testing, we compare runtime of the DRRN-BiLSTM Q-function with different Bt,

simulating over 10,000 episodes with N = 10 and K = 2, 3, 4, 5. We use 4-core 2.30GHz

CPU with a Tesla K80 GPU and results are shown in Figure 5.4. For fair comparisons,

we chose Q2=DRRN-BiLSTM and tested with different approaches for Bt. The two-stage

Q-function approach takes slightly longer time compared to random subsampling, but is

significantly faster than exploring the whole action space. More specifically, the search time

for the random selection and the two-stage Q-function are similar, both nearly constant for

different K. Using two-stage Q the test runtime is reduced by 6× for K = 3 and 11× for

K = 5 comparing to exploring the whole action space. Note that training DRRN-BiLSTM

with the whole action space is intractable, so we just used a subspace-trained DRRN-BiLSTM

model for testing. This however achieves worse performance compared to the two-stage Q

probably due to mismatch in training and testing.

68

0

2

4

6

8

2 3 4 5

Te
st

 ru
nt

im
e

(h
ou

rs
)

K

random
all
two-stage

Figure 5.4: Test runtime of N = 10, Q2=DRRN-BiLSTM and different approaches for Bt

69

Algorithm 2 Two-stage Q-learning (Q1: DRRN-Sum, Q2: DRRN-BiLSTM)

Initialize Reddit popularity prediction environment and load dictionary.

Initialize DRRN Q0(st, c
i
t; Θ1) with small random weights and train. The DRRN-Sum

Q1(st, at; Θ1) = Q1(st, {c1t , c2t , · · · , cKt }; Θ1) =
∑K

i=1Q0(st, c
i
t; Θ1)

Initialize replay memory D to capacity |D|.

for episode = 1, . . . ,M do

Randomly pick a discussion tree.

Read raw state text and a list of sub-action text from the simulator, and convert them

to representation s1 and c1,1, c1,2, . . . , c1,N .

Compute q1,j = Q0(s1, c1,j; Θ1) for the list of sub-actions using DRRN forward pass.

For each a1 ∈ A1, form value of Q1(s1, a1; Θ1) =
∑K

i=1Q0(s1, c
i
1; Θ1) =

∑K
i=1 q

i
1.

Keep a list of top m actions B1 = [a11, a
2
1, · · · , am1]; each ai1 consists of K sub-actions.

for t = 1, . . . , T do

Compute Q2(st, a
i
t; Θ2), i = 1, 2, · · · ,m for Bt, the list of top m actions using DRRN-

BiLSTM forward pass.

Select an action at based on policy π(at = ait|st) derived from Q2. Execute at.

Observe reward rt+1. Read the next state text and the next list of sub-action texts,

and convert them to representation st+1 and ct+1,1, ct+1,2, . . . , ct+1,N .

Compute qt+1,j = Q0(st+1, ct+1,j; Θ1) for the list of sub-actions using DRRN.

For each at+1 ∈ At+1, form value of Qt+1(st+1, at+1; Θ1) =
∑K

i=1Q0(st+1, c
i
t+1; Θ1) =∑K

i=1 q
i
t+1.

Keep a list of top m actions Bt+1 = [a1t+1, a
2
t+1, · · · , amt+1], where each ait+1 consists

of K sub-actions.

Store transition (st, at, rt+1, st+1,Bt+1) in D.

end for

if during training then Run Algorithm 3.

end if

end for

70

Algorithm 3 Mini-batch gradient descent

Sample random mini batch of transitions {(sk, ak, rk+1, sk+1,Bk+1)|k = 1, · · · , B} from

D.

Set yk =

rk+1 if sk+1 is terminal

rk+1 + γmaxa∈Bk+1
Q2(sk+1, a; Θ2)) otherwise

Perform a gradient descent step on
∑

k(yk−Q2(sk, ak; Θ2))
2 with respect to the network

parameters Θ2.

71

Chapter 6

INCORPORATING EXTERNAL KNOWLEDGE IN DRL

This chapter describes our contribution in incorporating external knowledge for predicting

popular Reddit threads. Section 6.1 introduces background literatures on using external

knowledge as a source of information. Section 6.2 describes the framework for incorporating

external knowledge, in the form of a collection of unstructured world news documents, as well

as temporal context extracted in the process of tracking and predicting popular discussion

threads. Section 6.3 presents experimental results. Incorporating external world knowledge

consistently improves over different configurations, and learns to attend to different parts of

knowledge depending on the discussion community. Adding temporal features on top of best

configurations gives mixed performances for different domains.

6.1 Background

People have used “external knowledge” to mean a variety of things in NLP, including lin-

guistic resources such as WordNet [190], structured knowledge bases [43, 16, 101], Wikipedia

[79, 186] and other unstructured text resources [123, 189, 2, 17, 20]. In general, the motiva-

tion for using external knowledge is to improve coverage and/or robustness for tasks such as

question answering [43, 16, 79, 189], information extraction [186, 123], and knowledge base

population [101, 2]. In this thesis, we are primarily interested in external knowledge repre-

sented by unstructured text, so some of this work is potentially relevant to our approach.

However, our objective is for this knowledge to provide global social context for identifying

popular discussion comments, so the text sources are different and metadata is potentially

useful.

In question answering, knowledge representation and reasoning plays a central role [43,

72

16]. In the TREC Question Answering track 2005, MIT CSAIL’s entries focused on using

external general-knowledge sources such as Wikipedia in factoid question answering [79]. In

[101], two fundamentally different approaches of using the web data for question answering

are presented and compared. In the federated approach, techniques for managing semistruc-

tured data are used and the web resources are treated as databases. In the distributed

approach, web data is viewed as a collection of unstructured text with redundancy. In

human-computer dialog systems such as a chatbot, information retrieval approach that can

leverage unstructured documents is used for responding to utterances [189]. In information

extraction, large plain-text collections such as newspaper documents are used for generating

patterns and extracting tuples (objects and their relations) in an iterative way [2]. Relation-

specific training examples are generated by matching Infobox (a set of tuples summarizing

the key attributes of the subject) on Wikipedia, to train an open information extractor [186].

Our work differs from these studies in that the knowledge is used here as context rather than

as an information source, specifically to augment the state in reinforcement learning. In

terms of retrieving text, tf-idf (term-frequency inverse-document-frequency) [144] is espe-

cially useful in measuring semantic similarity. Recently, automatically learned embeddings

for computing relevance are also studied in question answering [159] and machine translation

[108].

Our approach to leveraging external knowledge is similar to a memory network [159],

which uses an attention mechanism and provides an automatic method for learning an end-

to-end relevance function. In our work, we also leverage metadata (time, popularity) for

computing attention mechanism.

In reinforcement learning, Narasimhan et al. [123] present a framework of acquiring

and incorporating external evidence to improve extraction accuracy in domains where the

amount of training data is scarce. There are also efforts to utilize natural language external

knowledge in domain-specific tasks. In computer games, an approach to language grounding

is presented which automatically interprets text in the manual and uses domain knowledge

extracted from the text to improve game performance [17]. In an interactive computer

73

operating system environment, Branavan et al. address the task of mapping high-level

instructions to sequences of commands using policy gradient [20]. These studies are the

most closely related to our work, but they do not involve a natural language action space. In

addition, they focus on facts and instructions in their retrieving external knowledge, while

in our task the agent learns incorporating external knowledge for social context.

6.2 Framework

6.2.1 External world knowledge

The mechanism to incorporate external language knowledge into decision making assumes

that the agent will keep track of a memory space that helps with decision making, and

when a new state comes, the agent refers to this external knowledge and picks relevant

resources to help with decision making. The external knowledge used here is comprised of

other discussions about world events, assuming that these events and public reactions to

them impact how people react to discussion comments.

The specific architecture we propose is illustrated in Figure 6.1. The agent keeps a

growing collection of documents. That is, at each time t, the external knowledge contains

documents from worldnews that appear before time t. Every time the agent reads the state

information from the environment (Step 6 and Step 13 in Algorithm 2), it performs a lookup

operation in external knowledge in its memory. This external knowledge is an evolving

collection of documents from the worldnews subreddit. A document, in our case, is the post

plus top-5 popular comments in a worldnews discussion tree. We use an attention mechanism

that produces a probability distribution over the entire external knowledge resource. This

weight vector is computed by considering a set of features measuring the relevance between

the current state and each document in the collection. More specifically, we consider the

following three types of relevance:

• Timing features: When users express their opinions on a website such as Reddit, it is

likely they are referring to more recent news events. We use two indicator features to

74

--------- Doc 1---------
--------- Doc 2---------

⋅
⋅
⋅

-- 𝑓ଵ--
-- 𝑓ଶ--

.

.

.

State: raw-text 𝑠௧,
time stamp 𝑡

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(⋅ 𝛽)
𝑝ଵ
𝑝ଶ
.
.
.

--------- 𝑑ଵ----------
--------- 𝑑ଶ----------

⋅
⋅
⋅

World embedding: 𝑜௧

Augmented state

weighted sum

document embeddings

State embedding

External knowledge

Figure 6.1: Incorporating external knowledge to augment a state-side representation with
an attention mechanism. The attention features {f1, f2, · · · } depend on the state and time
stamp, helping the agent learn to pay different attention to external knowledge given different
states. The shaded blue parts are learned end-to-end within reinforcement learning.

represent whether a document from the external knowledge is within the past 24 hours,

or the past 7 days relative to the time of the new state. We denote these features as

1day and 1week, respectively.

• Semantic similarity: We use the standard tf-idf representation [143] of the state (com-

ments tracked so far) and the documents and compute cosine similarity scores between

the current state and each document in the external knowledge, as a measure for se-

mantic relevance. We denote this semantic similarity as usemantic, and usemantic ∈ [−1, 1].

• Popularity: For Reddit posts/comments, we use karma score as a measure for popular-

ity, assuming that more people are familiar with high popularity topics. To compensate

for the range difference compared to other relevance measures, we normalize karma

scores. Specifically, we sum the karma scores of the post and top-5 comments, and

then normalize the sum by dividing by the highest score in the external knowledge, so

75

the feature values fall in the range [0, 1]. We denote this normalized popularity score as

upopularity. Unlike in Fang et al. [40], the summed karma scores do not follow a Zipfian

distribution, so we do not use quantization or any nonlinear transformation.

For each state the agent extracts the above features for each document in the external

knowledge, and forms a four-dimensional feature vector f = [1day, 1week, usemantic, upopularity].

The attention weights are then computed as a linear combination followed by a softmax over

the entire external knowledge:

p = Softmax([1day,1week, usemantic, upopularity]·β)

where the Softmax operates over the collection of documents and p has dimension equal

to the number of documents. Note in our experimental setting, the softmax applies for

only documents that exist before the new comments appear, and this simulates a “real-

time” dynamic external knowledge resource. The attention weights p are then multiplied

with document embeddings {di} to form a vector representation (embedding) of “world”

knowledge:

o =
∑
i

pidi

The world embedding is concatenated with the original state embedding to enrich under-

standing of the environment.

Empirically, this architecture also demonstrates advantages, as presented in the experi-

mental section. First, the proposed architecture that augments the state side representation

with the world embedding leads to better performance and can also be easily extended to

other deep Q-learning variants. Second, the effects of the four relevance features are do-

main specific, i.e. some features help more in one domain but not so much in another. Our

model learns β in an end-to-end manner, and accounts for advantages of different features

in different domains.

76

6.2.2 Temporal context

In this subsection, we incorporate temporal context in predicting popular Reddit discussion

threads, and we consider timing as another form of knowledge other than language. More

specifically, we consider two types of temporal context, absolute timing and relative timing.

Absolute timing includes hour of the day (24-dimension one-hot encoding) and day of the

week (7-dimension one-hot encoding). Relative timing includes time since when the post was

posted, time since the parent comment, time since the last comment to its parent, rate of

commenting (window length between the 10 comment window). All relative timing features

are in hours.

Since timing features and text features are very distinct two types of features. We treat

them on top of previously introduced models. At each time step in the tracking process, the

agent sees a set of comments as sub-actions. For each comment, the agent extracts their

temporal context and concatenates with a predicted Q-value from the previous model (e.g.

DRRN with external knowledge in K = 1 case, or two-stage Q with external knowledge in

combinatorial case). Then a linear function approximation is used for computing a final Q-

value by considering both temporal context and text features. In the case of a combinatorial

action space, we choose summary statistics (i.e. sample averages) to be the temporal features

representing a set of sub-action temporal context. Specifically, when an action consists of K

sub-actions, each sub-action will provide a timing feature, and we average those K vectors

as the timing feature for this action.

6.3 Experiments

6.3.1 External knowledge configuration

We first study the effect of incorporating external knowledge, without considering the com-

binatorial action space. More specifically, we set K = 1 and use the simple DRRN. Each

action is to pick a comment {c1t} from Ct to track. We utilize 9.88k posts from the worldnews

subreddit as our external knowledge source.

77

askscience askmen todayilearned askwomen politics

-20

0

20

40

60

80

askscience askmen todayilearned askwomen politics

∆
av
er
ag
e
re
w
ar
d
(k
ar
m
a
sc
or
es
) w/o external knowledge w/ past-day w/ past-week

w/ semantic-similar w/ most-popular proposed w/ attention

Figure 6.2: Absolute gain in performance over a DRRN without external knowledge associ-
ated with different ways of incorporating external knowledge, for 5 different subreddits

For comparison, we experiment with a baseline DRRN without any external knowledge,

as described in Section 4.3. We also construct a baseline DRRN with hand-crafted rules for

picking documents from external knowledge. Those rules include: i) documents within the

past-day, ii) documents within the past-week, iii) the 10 semantically most similar documents,

and iv) the 10 most popular documents.

6.3.2 Experimental results using worldnews

Results showing the absolute performance gains associated with different ways of incorporat-

ing external knowledge for different subreddits over a baseline DRRN (without any external

knowledge) are given in Figure 6.2. The experimental results show that the DRRN using a

learned attention mechanism to retrieve relevant knowledge outperforms all the rule-based

configurations of DRRNs with external knowledge, and significantly outperforms the DRRN

baseline that does not use external knowledge. For askmen and askwomen the absolute gains

are small, but in fact the relative gains are similar to todayilearned as shown next. Also

we observe that different relevance features have different impact across subreddits. For

example, for askscience, past-day documents have higher impact than past-week documents,

78

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

askscience askmen todayilearned askwomen politics

R
el

at
iv

e
(%

) g
ai

n
(k

ar
m

a
sc

or
e) K=1 K=3

Figure 6.3: Relative (%) gain in performance from incorporating external knowledge across
5 different subreddits, for N = 10.

while for politics past-week documents are more important. The most-popular documents

actually have a negative effect for todayilearned, mainly because those are documents which

are most popular throughout the entire history, while todayilearned discussions value infor-

mation about recent events. Therefore, the attention mechanism seems to learn to rely on

proper features to retrieve useful knowledge for the needs of different domains. In principle,

since we are concatenating the world embedding to obtain an augmented state representa-

tion, the result should not get worse. We hypothesize this is due to overfitting and use of

mismatched documents, as in the most-popular setting for todayilearned.

In Figure 6.3, we present the results for the model using attention, but this time showing

relative gain. The figure shows effects of incorporating external knowledge with N = 10 for

both K = 1 and the combinatorial K = 3 case using two-stage Q-learning. In all cases,

incorporating external knowledge consistently gives a performance gain, but the benefits are

much smaller for K = 3. This suggests that external knowledge is mainly useful for finding

the very top thread, but less important if you are following multiple threads. The relative gain

for politics (34%) is substantially larger than for the other subreddits, because worldnews

tends to include a lot of political news. The lower impact on askmen and askwomen is

79

state Would it be possible to artificially create

an atmosphere like Earth has on Mars?

Does our sun have any unique features

compared to any other star?

top-1 Ultimate Reality TV: A Crazy Plan for

a Mars Colony - It might become the

mother of all reality shows. Fully 704 can-

didates are soon to begin competing for a

trip to Mars to establish a colony there.

Star Wars: Episode VII begins filming in

UAE desert. This can’t possibly be a mod-

ern Star Wars movie! I don’t see a green

screen in sight! Ya, it’s more like Galaxy

news.

top-2 ‘Alien thigh bone’ on Mars: Excitement

from alien hunters at ‘evidence’ of extrater-

restrial life. Mars likely never had enough

oxygen in its atmosphere and elsewhere to

support more complex organisms.

African Pop Star turns white (and causes

controversy) with new line of skin whiten-

ing cream. I would like to see an un-

shopped photo of her in natural lighting.

top-3 The Gaia (General Authority on Islamic

Affairs) and the UAE (United Arab Emi-

rates) have issued a fatwa on people liv-

ing on mars, due to the religious reasoning

that there is no reason to be there.

Dwarf planet discovery hints at a hidden

Super Earth in solar system - The body,

which orbits the sun at a greater distance

than any other known object, may be shep-

herded by an unseen planet.

least North Korea’s internet is offline; massive

DDOS attack presumed.

Hong Kong democracy movement hit by

2018. The vote has no standing in law, by

attempting to sabotage it, the Chinese(?)

are giving it legitimacy

Table 6.1: States and documents (partial text) showing how the agent learns to attend to
different parts of external knowledge

80

presumably because they cover more personal topics.

In Table 6.1, we show examples of most/least attended documents in the external knowl-

edge given the state description. The documents are shortened for brevity. In the first

example, the state is about a question about the atmosphere on Mars. The most-attended

documents are correctly related to Mars living conditions, in various respects. The second

example has the state talking about sun’s features compared to other stars. Interestingly,

although the agent is able to attend to top documents due to some topic word matching

(e.g. sun, star), the picked documents reflect popularity more than topic relevance. In terms

of popularity, both the Reality TV show in the first example and the Star Wars movie in

the second example have the highest karma scores among the top-3 documents, respectively,

showing the model’s consideration for other relevance other than semantic similarity. The

least-attended documents are totally irrelevant in both examples, as expected. Further-

more, we observe in other examples that the most-attended documents indeed change when

the state changes even within a discussion thread, showing the agent’s ability to adapt to

different parts of the knowledge source when the topic changes.

6.3.3 Incorporating temporal context experimental results

We further experiment with adding temporal context on top of the best configurations so

far on the Reddit task. For the K = 1 scenario, the extracted temporal features have 36

dimensions (4 relative timing features + 7 dimensions day of the week + 24 dimensions

hour of the day), and are concatenated with predicted q values from a DRRN with external

worldnews knowledge. Again we experiment with 5 subreddits and results are shown in Table

6.2.

From Table 6.2, timing features are helpful for most subreddits except askscience. We

hypothesize that this is because askscience popularity is related more to the quality of answers

in response to a scientific question. By looking at the parameters of the linear model,

parameters associated with absolute timing features take similar values, indicating they are

not very informative. This is expected, as our task focuses on picking a high popularity

81

External

knowledge?

Timing? askscience askmen todayilearned askwomen politics

N N 473.9 (9.3) 43.5 (0.8) 210.8 (9.1) 46.4 (1.5) 60.1 (2.9)

Y N 540.3 (13.0) 48.5 (2.4) 235.3 (11.1) 49.5 (1.8) 80.5 (3.6)

Y Y 517.1 (7.2) 52.5 (3.8) 237.6 (3.8) 51.2 (1.2) 83.4 (5.0)

Table 6.2: Effects of timing features (across different subreddits with K = 1)

comment in a relatively short time window. Thus actions within that time window will have

the same or neighboring absolute timing features.

We further experiment with a combinatorial action space with K = 3. In this case, only

relative timing features are added on top of the two-stage Q with incorporating external

worldnews knowledge. Results are shown in Table 6.3. Unfortunately timing features again

are hurting performance on askscience. For other subreddits, we see consistent but small

gains.

The small gain is surprising given that other work has shown that timing is important

[76]. We hypothesize two possible reasons. One is that timing features are mainly important

because high karma comments often come early, but in our task setting the window of 10

descendants effectively forces a choice of comments that arrive early. The second reason is

that timing mainly filters out less important comments, which represent the vast majority

of comments and therefore dominate evaluation metrics that consider all comments. In our

task definition, only high karma comments substantially contribute to the score.

82

External

knowledge?

Timing? askscience askmen todayilearned askwomen politics

N N 833.9 (5.7) 148.0 (5.5) 697.9 (9.4) 149.6 (3.3) 204.7 (4.2)

Y N 856.8 (8.1) 150.6 (6.1) 704.3 (9.8) 154.4 (2.9) 212.7 (3.9)

Y Y 839.5 (16.5) 155.6 (8.5) 706.8 (9.4) 156.6 (2.2) 216.4 (8.4)

Table 6.3: Effects of timing features (across different subreddits with K = 3)

83

Chapter 7

CONCLUSION

7.1 Summary of contributions

There has been increasing interest in applying deep reinforcement learning to a variety of

problems, but only a few studies address problems with natural language state and action

spaces. Our work serves as one of pioneers in this direction. In our setting, both the state and

the action spaces are inherently discrete, but we learn a continuous representation of each

using a new architecture for deep reinforcement learning with variants to handle problems

with combinatorial natural language actions (i.e. text selection). We also formulate two new

testbeds for RL: text-based games and predicting popular Reddit threads. In both tasks,

the states and actions are all described by natural language so they are useful for language

studies. Publicly available source codes are released and can be accessed on github.

More specifically, we first we develop a deep reinforcement relevance network (DRRN),

a novel DNN architecture for handling actions described by natural language in decision-

making tasks such as text games. In experiments with two text games and a discussion

thread tracking task, we show that the DRRN converges faster and to a better solution for

Q-learning than alternative architectures that do not use separate embeddings for the state

and action spaces.

Second, we develop novel deep Q-learning architectures to better model the state-action

value function with a combinatorial action space. The sub-actions are interdependent so

action value function is not a simple summation of sub-action values. The proposed DRRN-

BiLSTM method not only performs better than DRRN or Per-action DQN baselines across

different experimental configurations and domains, but it also generalizes well for scenarios

where the user can request changes in the number tracked. To explore the entire action

84

space while avoiding enumeration of all possible action combinations, we introduce a two-

stage Q-learning framework. Experimental results show performance improvement in the

task of predicting popular Reddit threads.

Third, we develop a novel architecture for incorporating unstructured external knowledge

into reinforcement learning. Information from the original state is used to query the knowl-

edge source (an evolving collection of documents corresponding to other online discussions

about world events), and the state representation is augmented by the outcome of the query.

This learnable attention mechanism (depending on multiple factors such as time, popularity,

and topic matching) gives improved performance in the task of predicting popular Reddit

threads, and gives dynamic attention conditioned on the current state. We also provide a

mechanism for including temporal features in characterizing the actions but find minimal

gain due to the restrictions on the action space of a short time window.

7.2 Future work

In this thesis, we follow the value function approach for reinforcement learning in natural

language scenarios. This is useful when a task involves a natural language state and action

space, and the agent interacts with the environment by evaluating a set of given actions and

picking one of them.

An important application that involves natural language state and action spaces is

human-computer dialogs. Human-computer dialog systems aim at providing an automated

language assistant, through typed-in text or spoken language, that converses with human

beings and performs certain tasks. The task could be either a specific domain-dependent task

such as booking flight tickets, providing information given a knowledge base, or providing

social interactions and entertainment such as chatbots. In a human-computer dialog system,

the state is usually the conversation history, or some extracted form with belief updates from

context. The action is a response generated to be replied to the user, or a dialog act from

a carefully designed set of agent intents in a specific domain. Our thesis methods could be

applied when the state is in natural language form and the action space is a set of candidate

85

responses. However, they are not directly applicable if we want to generate a natural lan-

guage response. To do that, we could follow a policy-based approach. Instead of focusing on

modeling an action value function, we can directly model the policy, i.e. conditional proba-

bility of taking an action given the state. In natural language processing, this is essentially

language modeling conditioned on context. The policy could be further refined within the

reinforcement learning framework. In the future the distinction between task-oriented dialog

systems and social/chat bots might be more obscure, and a unified framework for handling

general purpose dialog will be preferred. At present there are two research approaches. A

group of researchers start with modular systems and try to scale up to more domains, while

another stream of research starts with an end-to-end approach and try to improve upon

existing algorithms.

One might also wish to explore other forms of knowledge, such as a structured knowledge

base. In Chapter 6, we present an approach for incorporating a collection of unstructured

documents as a source of external knowledge. We also consider timing features as other

types of knowledge. In many applications a structured database or knowledge base is avail-

able, which may be beneficial to query for external information that helps with the current

reinforcement learning task. In addition, the structure in the database can be utilized to

speed up the query process, unlike the softmax attention approach we used with a collection

of documents.

It will also be of interest to apply deep reinforcement learning to other applications that

involve language, such as recommendation systems and strategic financial/business planning.

In those applications, text/language features may serve as a set of complementary features

to enhance performance. For example, a recommendation system usually uses multi-arm

bandits modeling or collaborative filtering that considers history and co-occurrence informa-

tion in action selection. However it has proven helpful to combine content (such as text)

information for cold start situations [147]. In financial pricing, value iteration and function

approximation are widely used. It might be helpful to also make use of NLP features in

function approximation.

86

Deep reinforcement learning is an exciting area that attracts more and more researchers

every year. This partly reflects how technologies evolve and develop. After the GMM-HMM

framework was first introduced in speech processing, for many years there had been incre-

mental algorithmic improvement to automatic speech recognition, until the realm of deep

learning. By the time deep learning was proven useful in speech recognition and computer vi-

sion, researchers devoted to seeking applications where this new technique might solve other

long-standing problems. This is similar to what is happening now in deep reinforcement

learning. Motivated by the huge success of AlphaGo, many researchers working on reinforce-

ment learning are interested to see if there are other applications where this algorithm can

create disruptive innovation, as impactful as AlphaGo. On the other hand, every technique

has limits. We will see whether deep reinforcement learning (and its variants) will eventually

lead to so-called “strong artificial intelligence” or “artificial general intelligence.”

87

BIBLIOGRAPHY

[1] E. Adams. Fundamentals of game design. Pearson Education, 2014.

[2] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text
collections. In Proceedings of the fifth ACM conference on Digital libraries, pages 85–
94. ACM, 2000.

[3] J. Allan. Topic detection and tracking: event-based information organization, vol-
ume 12. Springer Science & Business Media, 2012.

[4] Tim Althoff, Cristian Danescu-Niculescu-Mizil, and Dan Jurafsky. How to ask for a fa-
vor: A case study on the success of altruistic requests. arXiv preprint arXiv:1405.3282,
2014.

[5] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276, 1998.

[6] E. Ammicht, A. L Gorin, and T. Alonso. Knowledge collection for natural language
spoken dialog systems. In EUROSPEECH, 1999.

[7] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. In International Conference on Learning Representations, 2015.

[8] Lalit R Bahl, Peter F Brown, Peter V de Souza, and Robert L Mercer. Speech recogni-
tion with continuous-parameter hidden markov models. Computer Speech & Language,
2(3-4):219–234, 1987.

[9] Leemon C Baird III. Reinforcement learning through gradient descent. PhD thesis, US
Air Force Academy, US, 1999.

[10] Roja Bandari, Sitaram Asur, and Bernardo Huberman. The pulse of news in social me-
dia: forecasting popularity. In Proc. Int. AAAI Conf. Web and Social Media (ICWSM),
2012.

[11] Regina Barzilay, Kathleen R McKeown, and Michael Elhadad. Information fusion
in the context of multi-document summarization. In Proceedings of the 37th annual
meeting of the Association for Computational Linguistics on Computational Linguis-
tics, pages 550–557. Association for Computational Linguistics, 1999.

88

[12] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. J. Artif. Intell.
Res.(JAIR), 47:253–279, 2013.

[13] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language
model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993–1022,
2003.

[15] Dan Bohus, Alexander Rudnicky, et al. Constructing accurate beliefs in spoken dialog
systems. In Automatic Speech Recognition and Understanding, 2005 IEEE Workshop
on, pages 272–277. IEEE, 2005.

[16] J. Boyd-Graber, B. Satinoff, H. He, and H. Daumé III. Besting the quiz master:
Crowdsourcing incremental classification games. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning, pages 1290–1301. Association for Computational Linguistics,
2012.

[17] S. Branavan, D. Silver, and R. Barzilay. Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intelligence Research, 43:661–704, 2012.

[18] S.R.K. Branavan, H. Chen, L. Zettlemoyer, and R. Barzilay. Reinforcement learning for
mapping instructions to actions. In Proc. of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th IJCNLP, pages 82–90, August 2009.

[19] SRK Branavan, David Silver, and Regina Barzilay. Learning to win by reading man-
uals in a monte-carlo framework. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume 1,
pages 268–277. Association for Computational Linguistics, 2011.

[20] SRK Branavan, Luke S Zettlemoyer, and Regina Barzilay. Reading between the lines:
Learning to map high-level instructions to commands. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, pages 1268–1277.
Association for Computational Linguistics, 2010.

[21] Jianshu Chen, Ji He, Xiaodong He, Lin Xiao, Jianfeng Gao, and Li Deng. Interpreting
the prediction process of a deep network constructed from supervised topic models. In
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Confer-
ence on, pages 2429–2433. IEEE, 2016.

89

[22] Jianshu Chen, Ji He, Yelong Shen, Lin Xiao, Xiaodong He, Jianfeng Gao, Xinying
Song, and Li Deng. End-to-end learning of lda by mirror-descent back propagation
over a deep architecture. In Advances in Neural Information Processing Systems, pages
1765–1773, 2015.

[23] Justin Cheng, Lada Adamic, P. Alex Dow, Jon Kleinberg, and Jure Leskovec. Can
cascades be predicted? In Proc. Int. Conf. World Wide Web (WWW), 2014.

[24] Freddy Chong Tat Chua and Sitaram Asur. Automatic summarization of events from
social media. In ICWSM. Citeseer, 2013.

[25] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[26] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proc. of the 25th International
Conference on Machine learning, pages 160–167. ACM, 2008.

[27] Heriberto Cuayáhuitl, Simon Keizer, and Oliver Lemon. Strategic dialogue manage-
ment via deep reinforcement learning. arXiv preprint arXiv:1511.08099, 2015.

[28] G. E Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neu-
ral networks for large-vocabulary speech recognition. Audio, Speech, and Language
Processing, IEEE Transactions on, 20(1):30–42, 2012.

[29] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[30] Hoa Trang Dang and Karolina Owczarzak. Overview of the tac 2008 update summa-
rization task. In Proceedings of text analysis conference, pages 1–16, 2008.

[31] H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction. Machine
learning, 75(3):297–325, 2009.

[32] Steven Davis and Paul Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE transactions
on acoustics, speech, and signal processing, 28(4):357–366, 1980.

[33] Gerald DeJong. An overview of the frump system. Strategies for natural language
processing, 113, 1982.

90

[34] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and Trends
in Signal Processing, 7(3–4):197–387, 2014.

[35] B. Dhingra, L. Li, X. Li, J. Gao, Y-N Chen, F. Ahmed, and L. Deng. End-to-
end reinforcement learning of dialogue agents for information access. arXiv preprint
arXiv:1609.00777, 2016.

[36] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep
reinforcement learning for continuous control. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), 2016.

[37] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and Heung-Yeung Shum. An em-
pirical study on learning to rank of tweets. In Proceedings of the 23rd International
Conference on Computational Linguistics, pages 295–303. Association for Computa-
tional Linguistics, 2010.

[38] G. Dulac-Arnold, R. Evans, H. Van Hasselt, P. Sunehag, T. Lillicrap, and J. Hunt. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679,
2016.

[39] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and M. Mausam. Open information
extraction: The second generation. In IJCAI, volume 11, pages 3–10, 2011.

[40] H. Fang, H. Cheng, and M. Ostendorf. Learning latent local conversation modes
for predicting community endorsement in online discussions. In Proc. Int. Workshop
Natural Language Processing for Social Media, page 55, 2016.

[41] Hao Fang, Hao Cheng, and Mari Ostendorf. Learning latent local conversation
modes for predicting community endorsement in online discussions. arXiv preprint
arXiv:1608.04808, 2016.

[42] Atefeh Farzindar and Diana Inkpen. Natural language processing for social media.
Synthesis Lectures on Human Language Technologies, 8(2):1–166, 2015.

[43] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A Kalyanpur, A. Lally,
J W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An overview of the
deepqa project. AI magazine, 31(3):59–79, 2010.

[44] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Aistats, volume 9, pages 249–256, 2010.

91

[45] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Aistats, volume 15, page 275, 2011.

[46] Jade Goldstein, Mark Kantrowitz, Vibhu Mittal, and Jaime Carbonell. Summariz-
ing text documents: sentence selection and evaluation metrics. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development in
information retrieval, pages 121–128. ACM, 1999.

[47] Yihong Gong and Xin Liu. Generic text summarization using relevance measure and
latent semantic analysis. In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 19–25. ACM,
2001.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[49] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5):602–610, 2005.

[50] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In
NIPS, volume 1, pages 1523–1530, 2001.

[51] Hongyu Guo. Generating text with deep reinforcement learning. arXiv preprint
arXiv:1510.09202, 2015.

[52] Qi Guo, Fernando Diaz, and Elad Yom-Tov. Updating users about time critical events.
In Pavel Serdyukov, Pavel Braslavski, SergeiO. Kuznetsov, Jaap Kamps, Stefan Rger,
Eugene Agichtein, Ilya Segalovich, and Emine Yilmaz, editors, Advances in Informa-
tion Retrieval, volume 7814 of Lecture Notes in Computer Science, pages 483–494.
Springer Berlin Heidelberg, 2013.

[53] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep
learning for real-time atari game play using offline monte-carlo tree search planning.
In Advances in Neural Information Processing Systems, pages 3338–3346, 2014.

[54] Sanda Harabagiu and Andrew Hickl. Relevance modeling for microblog summarization.
In Fifth International AAAI Conference on Weblogs and Social Media, 2011.

[55] Hado V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Process-
ing Systems 23, pages 2613–2621. Curran Associates, Inc., 2010.

92

[56] M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action
space. In International Conference on Learning Representations, 2016.

[57] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observ-
able mdps. arXiv preprint arXiv:1507.06527, 2015.

[58] J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Ostendorf. Deep reinforcement
learning with a natural language action space. In Proc. Annu. Meeting Assoc. for
Computational Linguistics (ACL), 2016.

[59] J. He, M. Ostendorf, X. He, J. Chen, J. Gao, L. Li, and L. Deng. Deep reinforcement
learning with a combinatorial action space for predicting popular reddit threads. In
Proc. of the 2016 Conference on Empirical Methods in Natural Language Processing,
November 2016.

[60] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Os-
tendorf. Deep reinforcement learning with an action space defined by natural language.
arXiv preprint arXiv:1511.04636, 2015.

[61] Ji He, Alex Marin, and Mari Ostendorf. Effective data-driven feature learning for
detecting name errors in automatic speech recognition. In Spoken Language Technology
Workshop (SLT), 2014 IEEE, pages 230–235. IEEE, 2014.

[62] Ji He, Mari Ostendorf, and Xiaodong He. Reinforcement learning with external knowl-
edge and two-stage q-functions for predicting popular reddit threads. arXiv preprint
arXiv:1704.06217, 2017.

[63] Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, and
Li Deng. Deep reinforcement learning with a combinatorial action space for predicting
and tracking popular discussion threads. arXiv preprint arXiv:1606.03667, 2016.

[64] Ji He, Yao Qian, Frank K Soong, and Sheng Zhao. Turning a monolingual speaker
into multilingual for a mixed-language tts. In Thirteenth Annual Conference of the
International Speech Communication Association, 2012.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[66] John R Hershey, Jonathan Le Roux, and Felix Weninger. Deep unfolding: Model-based
inspiration of novel deep architectures. arXiv preprint arXiv:1409.2574, 2014.

93

[67] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Process. Mag., 29(6):82–97, 2012.

[68] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[69] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[70] Liangjie Hong, Ovidiu Dan, and Brian Davison. Predicting popular messages in Twit-
ter. In Proc. Int. Conf. World Wide Web (WWW), pages 57–58, 2011.

[71] Chiao-Fang Hsu, Elham Khabiri, and James Caverlee. Ranking comments on the
social web. In Computational Science and Engineering, 2009. CSE’09. International
Conference on, volume 4, pages 90–97. IEEE, 2009.

[72] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 168–177. ACM, 2004.

[73] P-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured
semantic models for web search using clickthrough data. In Proc. of the ACM Interna-
tional Conference on Information & Knowledge Management, pages 2333–2338. ACM,
2013.

[74] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[75] A. Jaech, V. Zayats, H. Fang, M. Ostendorf, and H. Hajishirzi. Talking to the crowd:
What do people react to in online discussions? In Proc. of the Conference on Empirical
Methods in Natural Language Processing, pages 2026–2031, September 2015.

[76] Aaron Jaech, Victoria Zayats, Hao Fang, Mari Ostendorf, and Hannaneh Hajishirzi.
Talking to the crowd: What do people react to in online discussions? arXiv preprint
arXiv:1507.02205, 2015.

[77] C.D. Jones, A.B. Smith, and E.F. Roberts. Article title. In Proceedings Title, volume II,
pages 803–806. IEEE, 2003.

94

[78] Karen Sparck Jones. What might be in a summary? Information retrieval, 93:9–26,
1993.

[79] B. Katz, G. Marton, G. C Borchardt, A. Brownell, S. Felshin, D. Loreto, J. Louis-
Rosenberg, B. Lu, F. Mora, S. Stiller, et al. External knowledge sources for question
answering. In TREC, 2005.

[80] Elham Khabiri, James Caverlee, and Chiao-Fang Hsu. Summarizing user-contributed
comments. In ICWSM, 2011.

[81] Hyun Duk Kim and ChengXiang Zhai. Generating comparative summaries of contra-
dictory opinions in text. In Proceedings of the 18th ACM conference on Information
and knowledge management, pages 385–394. ACM, 2009.

[82] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[83] R. Kiros, Y. Zhu, R. R Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler.
Skip-thought vectors. In Advances in Neural Information Processing Systems, pages
3276–3284, 2015.

[84] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Machine
Learning: ECML 2006, pages 282–293. Springer, 2006.

[85] Andreas Krause and Carlos Guestrin. Near-optimal observation selection using sub-
modular functions. In AAAI, volume 7, pages 1650–1654, 2007.

[86] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[87] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th international conference
on World wide web, pages 591–600. ACM, 2010.

[88] Himabindu Lakkaraju, Julian McAuley, and Jure Leskovec. What’s in a name? Un-
derstanding the interplay between titles, content, and communities in social media. In
Proc. Int. AAAI Conf. Web and Social Media (ICWSM), 2013.

[89] C. Lampe and P. Resnick. Slash(dot) and burn: distributed moderation in a large online
conversation space. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 543–550, 2004.

95

[90] Q. V Le and T. Mikolov. Distributed representations of sentences and documents.
arXiv preprint arXiv:1405.4053, 2014.

[91] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[92] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. arXiv
preprint arXiv:1606.04155, 2016.

[93] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao. Deep reinforcement
learning for dialogue generation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1192–1202, Austin, Texas, November
2016. Association for Computational Linguistics.

[94] Jiwei Li, Sujian Li, Xun Wang, Ye Tian, and Baobao Chang. Update summarization
using a multi-level hierarchical dirichlet process model. In COLING, pages 1603–1618,
2012.

[95] L. Li, W. Chu, J. Langford, and R. E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010.

[96] L. Li, J. D. Williams, and S. Balakrishnan. Reinforcement learning for spoken dialog
management using least-squares policy iteration and fast feature selection. In Pro-
ceedings of the Tenth Annual Conference of the International Speech Communication
Association (INTERSPEECH-09), page 24752478, 2009.

[97] X. Li, L. Li, J. Gao, X. He, J. Chen, L. Deng, and J. He. Recurrent Reinforcement
Learning: A Hybrid Approach. ArXiv e-prints, September 2015.

[98] Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and
Ji He. Recurrent reinforcement learning: A hybrid approach. arXiv preprint
arXiv:1509.03044, 2015.

[99] T. P Lillicrap, J. J Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

[100] Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram
co-occurrence statistics. In Proceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pages 71–78. Association for Computational Linguistics, 2003.

96

[101] J. J Lin. The web as a resource for question answering: Perspectives and challenges.
In LREC, 2002.

[102] L-J Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning, 8(3–4):293–321, 1992.

[103] L-J. Lin. Reinforcement learning for robots using neural networks. Technical report,
DTIC Document, 1993.

[104] William A Little. The existence of persistent states in the brain. Mathematical bio-
sciences, 19(1-2):101–120, 1974.

[105] Xiaohua Liu, Yitong Li, Furu Wei, and Ming Zhou. Graph-based multi-tweet summa-
rization using social signals. In COLING, pages 1699–1714, 2012.

[106] David G Lowe. Object recognition from local scale-invariant features. In Computer vi-
sion, 1999. The proceedings of the seventh IEEE international conference on, volume 2,
pages 1150–1157. Ieee, 1999.

[107] Michal Lukasik, Trevor Cohn, and Kalina Bontcheva. Point process modelling of ru-
mour dynamics in social media. In Proc. Annu. Meeting Assoc. for Computational
Linguistics (ACL), 2015.

[108] M-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Proc. of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421, September 2015.

[109] Alex Marin, Mari Ostendorf, and Ji He. Learning phrase patterns for asr name error
detection using semantic similarity. In Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[110] M. Mathioudakis and N. Koudas. Twittermonitor: trend detection over the twitter
stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pages 1155–1158. ACM, 2010.

[111] Julie Medero and Mari Ostendorf. Identifying targets for syntactic simplification. In
SLaTE, pages 69–72, 2011.

[112] Neville Mehta, Rakesh Gupta, Antoine Raux, Deepak Ramachandran, and Stefan
Krawczyk. Probabilistic ontology trees for belief tracking in dialog systems. In Pro-
ceedings of the 11th Annual Meeting of the Special Interest Group on Discourse and
Dialogue, pages 37–46. Association for Computational Linguistics, 2010.

97

[113] Clemens Meinhart. Studying user submissions and content on reddit.

[114] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[115] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In INTERSPEECH 2010, 11th
Annual Conference of the International Speech Communication Association, Makuhari,
Chiba, Japan, September 26-30, 2010, pages 1045–1048, 2010.

[116] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous
space word representations. In HLT-NAACL, pages 746–751, 2013.

[117] A. Mnih and G. Hinton. Three new graphical models for statistical language modelling.
In Proc. of the 24th International Conference on Machine learning, pages 641–648.
ACM, 2007.

[118] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with Deep Reinforcement Learning. ArXiv e-prints,
December 2013.

[119] V. Mnih, K. Kavukcuoglu, D. Silver, A. A Rusu, J. Veness, M. G Bellemare, A. Graves,
M. Riedmiller, A. K Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[120] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016.

[121] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[122] K. Narasimhan, T. Kulkarni, and R. Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proc. of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1–11, September 2015.

[123] K. Narasimhan, A. Yala, and R. Barzilay. Improving information extraction by ac-
quiring external evidence with reinforcement learning. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2355–2365,
Austin, Texas, November 2016. Association for Computational Linguistics.

98

[124] Ani Nenkova and Kathleen McKeown. A survey of text summarization techniques. In
Mining Text Data, pages 43–76. Springer, 2012.

[125] R. Nogueira and K. Cho. End-to-end goal-driven web navigation. In Advances in
Neural Information Processing Systems 29, pages 1903–1911, 2016.

[126] Alexander Pak and Patrick Paroubek. Twitter as a corpus for sentiment analysis and
opinion mining. In LREC, volume 10, pages 1320–1326, 2010.

[127] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. Deep sentence embedding using the long short term
memory network: Analysis and application to information retrieval. arXiv preprint
arXiv:1502.06922, 2015.

[128] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectiv-
ity summarization based on minimum cuts. In Proceedings of the 42nd annual meeting
on Association for Computational Linguistics, page 271. Association for Computational
Linguistics, 2004.

[129] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

[130] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep mul-
titask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[131] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. ICML (3), 28:1310–1318, 2013.

[132] Michael J Paul, ChengXiang Zhai, and Roxana Girju. Summarizing contrastive view-
points in opinionated text. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 66–76. Association for Computational Linguis-
tics, 2010.

[133] J. Pennington, R. Socher, and C. D Manning. Glove: Global vectors for word repre-
sentation. Proc. of the Empiricial Methods in Natural Language Processing (EMNLP
2014), 12:1532–1543, 2014.

[134] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt to win! predicting message
propagation in Twitter. In Proc. Int. AAAI Conf. Web and Social Media (ICWSM),
pages 586–589, 2011.

99

[135] Dragomir R Radev, Hongyan Jing, and Malgorzata Budzikowska. Centroid-based sum-
marization of multiple documents: sentence extraction, utility-based evaluation, and
user studies. In Proceedings of the 2000 NAACL-ANLP Workshop on Automatic sum-
marization, pages 21–30. Association for Computational Linguistics, 2000.

[136] Predicting responses to Microblog posts. Predicting responses to microblog posts. In
Proc. Conf. North American Chapter Assoc. for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 602–606, 2012.

[137] B. Richard. Dynamic programming. Princeton University Press, 1957.

[138] Andrew; Ernest Adams (2006). Fundamentals of Game Design. Prentice Hall. Rollings.
Rollings, Andrew; Ernest Adams (2006). Fundamentals of Game Design. Prentice Hall.

[139] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[140] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[141] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia
Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[142] B. Sallans and G. E Hinton. Reinforcement learning with factored states and actions.
The Journal of Machine Learning Research, 5:1063–1088, 2004.

[143] G. Salton and M. J McGill. Introduction to modern information retrieval. McGraw-
Hill, Inc., 1986.

[144] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Information processing & management, 24(5):513–523, 1988.

[145] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[146] K. Scheffler and S. Young. Automatic learning of dialogue strategy using dialogue
simulation and reinforcement learning. In Proc. of the second International Conference
on Human Language Technology Research, pages 12–19, 2002.

100

[147] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Methods
and metrics for cold-start recommendations. In Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 253–260. ACM, 2002.

[148] Holger Schwenk. Continuous space language models. Computer Speech & Language,
21(3):492–518, 2007.

[149] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil. A latent
semantic model with convolutional-pooling structure for information retrieval. In Pro-
ceedings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management, pages 101–110. ACM, 2014.

[150] D. Silver, A. Huang, C. J Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of
Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[151] S. P Singh, M. J Kearns, D. J Litman, and M. A Walker. Reinforcement learning for
spoken dialogue systems. In NIPS, pages 956–962, 1999.

[152] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. Optimizing di-
alogue management with reinforcement learning: Experiments with the njfun system.
Journal of Artificial Intelligence Research, pages 105–133, 2002.

[153] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP), volume 1631, page 1642. Citeseer,
2013.

[154] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y. Nie, J. Gao, and
B. Dolan. A neural network approach to context-sensitive generation of conversational
responses. In NAACL-HLT 2015, 2015.

[155] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[156] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
arXiv preprint arXiv:1505.00387, 2015.

101

[157] Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-Barahona, Stefan Ultes, David
Vandyke, Tsung-Hsien Wen, and Steve Young. Continuously learning neural dialogue
management. arXiv preprint arXiv:1606.02689, 2016.

[158] B. Suh, L. Hong, P. Pirolli, and E. H. Chi. Want to be retweeted? Large scale analytics
on factors impacting retweet in twitter network. In Proc. IEEE Inter. Conf. on Social
Computing (SocialCom), pages 177–184, 2010.

[159] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. In
Advances in neural information processing systems, pages 2440–2448, 2015.

[160] Tao Sun, Ming Zhang, and Qiaozhu Mei. Unexpected relevance: an empirical study of
serendipity in retweets. In Proc. Int. AAAI Conf. Weblogs and Social Media (ICWSM),
pages 592–601, 2013.

[161] I. Sutskever, O. Vinyals, and Q. V Le. Sequence to sequence learning with neural
networks. In NIPS, pages 3104–3112, 2014.

[162] Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On the im-
portance of initialization and momentum in deep learning. ICML (3), 28:1139–1147,
2013.

[163] R. S Sutton and A. G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

[164] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy
gradient methods for reinforcement learning with function approximation. In NIPS,
volume 99, pages 1057–1063, 1999.

[165] Chenhao Tan, Lillian Lee, and Bo Pang. The effect of wording on message propagation:
Topic- and author-controlled natural experiments on Twitter. In Proc. Annu. Meeting
Assoc. for Computational Linguistics (ACL), pages 175–186, 2014.

[166] Chenhao Tan, Lillian Lee, and Bo Pang. The effect of wording on message propa-
gation: Topic-and author-controlled natural experiments on twitter. arXiv preprint
arXiv:1405.1438, 2014.

[167] Manos Tasgkias, Wouter Weerkamp, and Maarten de Rijke. Predicting the volume of
comments on online news stories. In Proc. CIKM, pages 1765–1768, 2009.

102

[168] Alexandru Tatar, Jeremie Leguay, Panayotis Antoniadis, Arnaud Limbourg,
Marcelo Dias de Amorim, and Serge Fdida. Predicting the polularity of online ar-
ticles based on user comments. In Proc. Inter. Conf. on Web Intelligence, Mining and
Semantics (WIMS), pages 67:1–67:8, 2011.

[169] G. Tesauro. Temporal difference learning and TD-gammon. Communications of the
ACM, 38(3):58–68, 1995.

[170] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2), 2012.

[171] Ivan Titov and Ryan T McDonald. A joint model of text and aspect ratings for
sentiment summarization. In ACL, volume 8, pages 308–316. Citeseer, 2008.

[172] John N Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning
with function approximation. Automatic Control, IEEE Transactions on, 42(5):674–
690, 1997.

[173] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461, 2015.

[174] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar
as a foreign language. In Advances in Neural Information Processing Systems, pages
2773–2781, 2015.

[175] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey
Hinton. Grammar as a foreign language. arXiv preprint arXiv:1412.7449, 2014.

[176] Marilyn A. Walker. An application of reinforcement learning to dialogue strategy selec-
tion in a spoken dialogue system for email. Journal of Artificial Intelligence Research,
pages 387–416, 2000.

[177] Zhuoran Wang and Oliver Lemon. A simple and generic belief tracking mechanism for
the dialog state tracking challenge: On the believability of observed information. In
Proceedings of the SIGDIAL 2013 Conference, pages 423–432, 2013.

[178] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for
deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

[179] C. JCH Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

103

[180] T.-H. Wen, M. Gasic, N. Mrksic, L. M Rojas-Barahona, P.-H. Su, S. Ultes, D. Vandyke,
and S. Young. A network-based end-to-end trainable task-oriented dialogue system.
arXiv preprint arXiv:1604.04562, 2016.

[181] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young. Semantically conditioned lstm-based natural language generation for spoken
dialogue systems. arXiv preprint arXiv:1508.01745, 2015.

[182] T. Weninger, X. A. Zhu, and J. Han. An exploration of discussion threads in social news
sites: A case study of the reddit community. In Advances in Social Networks Analysis
and Mining (ASONAM), 2013 IEEE/ACM International Conference on, pages 579–
583. IEEE, 2013.

[183] Jason D Williams. The best of both worlds: unifying conventional dialog systems and
pomdps. In INTERSPEECH, pages 1173–1176, 2008.

[184] Jason D Williams and Steve Young. Partially observable markov decision processes for
spoken dialog systems. Computer Speech & Language, 21(2):393–422, 2007.

[185] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In Machine Learning, pages 229–256, 1992.

[186] F. Wu and D. S Weld. Open information extraction using wikipedia. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages
118–127. Association for Computational Linguistics, 2010.

[187] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural
machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[188] Rui Yan, Mirella Lapata, and Xiaoming Li. Tweet recommendation with graph co-
ranking. In Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics: Long Papers-Volume 1, pages 516–525. Association for Computa-
tional Linguistics, 2012.

[189] Z. Yan, N. Duan, J. Bao, P. Chen, M. Zhou, Z. Li, and J. Zhou. Docchat: An infor-
mation retrieval approach for chatbot engines using unstructured documents. In Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 516–525, Berlin, Germany, August 2016. Association
for Computational Linguistics.

104

[190] H. Yang, T-S Chua, S. Wang, and C-K Koh. Structured use of external knowledge for
event-based open domain question answering. In Proceedings of the 26th annual inter-
national ACM SIGIR conference on Research and development in informaion retrieval,
pages 33–40. ACM, 2003.

[191] Tae Yano and Noah A. Smith. What’s worthy of comment? Content and comment vol-
ume in political blogs. In Proc. Int. AAAI Conf. Weblogs and Social Media (ICWSM),
2010.

[192] Steve Young, Milica Gasic, Blaise Thomson, and John D Williams. Pomdp-based
statistical spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–
1179, 2013.

[193] Y. Yue and C. Guestrin. Linear submodular bandits and their application to diversified
retrieval. In Advances in Neural Information Processing Systems, pages 2483–2491,
2011.

[194] Vicky Zayats and Mari Ostendorf. Conversation modeling on reddit using a graph-
structured lstm. arXiv preprint arXiv:1704.02080, 2017.

[195] Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He, Anand Rajaraman, and Jure
Leskovec. SEISMIC: A self-exciting point process model for predicting Tweet pop-
ularity. In Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining, 2015.

[196] Arkaitz Zubiaga, Damiano Spina, Enrique Amigó, and Julio Gonzalo. Towards real-
time summarization of scheduled events from twitter streams. In Proceedings of the
23rd ACM conference on Hypertext and social media, pages 319–320. ACM, 2012.

